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chapter 16
Wave Motion
16.1 Propagation of a Disturbance

16.2 Analysis Model: Traveling Wave 

16.3 The Speed of Waves on Strings

16.4 Reflection and Transmission

16.5 Rate of Energy Transfer by Sinusoidal 
Waves on Strings

16.6 The Linear Wave Equation

Many of us experienced waves as children 

when we dropped a pebble into a pond. 

At the point the pebble hits the water’s sur-

face, circular waves are created. These waves 

move outward from the creation point in 

expanding circles until they reach the shore. 

If you were to examine carefully the motion 

of a small object floating on the disturbed 

water, you would see that the object moves 

vertically and horizontally about its origi-

nal position but does not undergo any net 

displacement away from or toward the 

point at which the pebble hit the water. The 

small elements of water in contact with the 

object, as well as all the other water ele-

ments on the pond’s surface, behave in the 

same way. That is, the water wave moves from the point of origin to the shore, but the 

water is not carried with it.

 The world is full of waves, the two main types being mechanical waves and electro-

magnetic waves. In the case of mechanical waves, some physical medium is being dis-

turbed; in our pebble example, elements of water are disturbed. Electromagnetic waves 

do not require a medium to propagate; some examples of electromagnetic waves are 

visible light, radio waves, television signals, and x-rays. Here, in this part of the book, we 

study only mechanical waves.

Lifeguards in New South Wales, Australia practice taking their boat over large 
water waves breaking near the shore. A wave moving over the surface of water is 
one example of a mechanical wave. (Travel Ink/Gallo Images/Getty Images)
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466 CHAPTER 16 | Wave Motion

 Consider again the small object floating on the water. We have caused the object to 

move at one point in the water by dropping a pebble at another location. The object has 

gained kinetic energy from our action, so energy must have transferred from the point 

at which the pebble is dropped to the position of the object. This feature is central to 

wave motion: energy is transferred over a distance, but matter is not.

16.1 Propagation of a Disturbance
The introduction to this chapter alluded to the essence of wave motion: the trans-

fer of energy through space without the accompanying transfer of matter. In the list 

of energy transfer mechanisms in Chapter 8, two mechanisms—mechanical waves 

and electromagnetic radiation—depend on waves. By contrast, in another mecha-

nism, matter transfer, the energy transfer is accompanied by a movement of matter 

through space with no wave character in the process.

 All mechanical waves require (1) some source of disturbance, (2) a medium con-

taining elements that can be disturbed, and (3) some physical mechanism through 

which elements of the medium can influence each other. One way to demonstrate 

wave motion is to flick one end of a long string that is under tension and has its 

opposite end fixed as shown in Figure 16.1. In this manner, a single bump (called 

a pulse) is formed and travels along the string with a definite speed. Figure 16.1 

represents four consecutive “snapshots” of the creation and propagation of the trav-

eling pulse. The hand is the source of the disturbance. The string is the medium 

through which the pulse travels—individual elements of the string are disturbed 

from their equilibrium position. Furthermore, the elements are connected together 

so they influence each other. The pulse has a definite height and a definite speed 

of propagation along the medium. The shape of the pulse changes very little as it 

travels along the string.1

 We shall first focus on a pulse traveling through a medium. Once we have 

explored the behavior of a pulse, we will then turn our attention to a wave, which is 

a periodic disturbance traveling through a medium. We create a pulse on our string 

by flicking the end of the string once as in Figure 16.1. If we were to move the end 

of the string up and down repeatedly, we would create a traveling wave, which has 

characteristics a pulse does not have. We shall explore these characteristics in Sec-

tion 16.2.

 As the pulse in Figure 16.1 travels, each disturbed element of the string moves in 

a direction perpendicular to the direction of propagation. Figure 16.2 illustrates this 

point for one particular element, labeled P. Notice that no part of the string ever 

moves in the direction of the propagation. A traveling wave or pulse that causes 

the elements of the disturbed medium to move perpendicular to the direction of 

propagation is called a transverse wave.
 Compare this wave with another type of pulse, one moving down a long, stretched 

spring as shown in Figure 16.3. The left end of the spring is pushed briefly to the 

As the pulse moves along the 
string, new elements of the 
string are displaced from their 
equilibrium positions.

Figure 16.1  A hand moves the end 

of a stretched string up and down 

once (red arrow), causing a pulse to 

travel along the string.

1In reality, the pulse changes shape and gradually spreads out during the motion. This effect, called dispersion, is com-

mon to many mechanical waves as well as to electromagnetic waves. We do not consider dispersion in this chapter.

The direction of the displacement 
of any element at a point P on the 
string is perpendicular to the 
direction of propagation (red 
arrow).

P

P

P

Figure 16.2  The displacement of a 

particular string element for a trans-

verse pulse traveling on a stretched 

string.

As the pulse passes by, the 
displacement of the coils is parallel to 
the direction of the propagation.

The hand moves back 
and forth once to create 
a longitudinal pulse.

Figure 16.3  A longitudinal pulse 

along a stretched spring.
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16.1 | Propagation of a Disturbance 467

right and then pulled briefly to the left. This movement creates a sudden compres-

sion of a region of the coils. The compressed region travels along the spring (to 

the right in Fig. 16.3). Notice that the direction of the displacement of the coils is 

parallel to the direction of propagation of the compressed region. A traveling wave 

or pulse that causes the elements of the medium to move parallel to the direction 

of propagation is called a longitudinal wave.
 Sound waves, which we shall discuss in Chapter 17, are another example of lon-

gitudinal waves. The disturbance in a sound wave is a series of high-pressure and 

low-pressure regions that travel through air.

 Some waves in nature exhibit a combination of transverse and longitudinal dis-

placements. Surface-water waves are a good example. When a water wave travels 

on the surface of deep water, elements of water at the surface move in nearly circu-

lar paths as shown in Active Figure 16.4. The disturbance has both transverse and 

longitudinal components. The transverse displacements seen in Active Figure 16.4 

represent the variations in vertical position of the water elements. The longitudinal 

displacements represent elements of water moving back and forth in a horizontal 

direction.

 The three-dimensional waves that travel out from a point under the Earth’s sur-

face at which an earthquake occurs are of both types, transverse and longitudinal. 

The longitudinal waves are the faster of the two, traveling at speeds in the range of 

7 to 8 km/s near the surface. They are called P waves, with “P” standing for primary, 
because they travel faster than the transverse waves and arrive first at a seismo-

graph (a device used to detect waves due to earthquakes). The slower transverse 

waves, called S waves, with “S” standing for secondary, travel through the Earth at 

4 to 5 km/s near the surface. By recording the time interval between the arrivals 

of these two types of waves at a seismograph, the distance from the seismograph to 

the point of origin of the waves can be determined. This distance is the radius of an 

imaginary sphere centered on the seismograph. The origin of the waves is located 

somewhere on that sphere. The imaginary spheres from three or more monitoring 

stations located far apart from one another intersect at one region of the Earth, 

and this region is where the earthquake occurred.

 Consider a pulse traveling to the right on a long string as shown in Figure 16.5. 

Figure 16.5a represents the shape and position of the pulse at time t 5 0. At this 

time, the shape of the pulse, whatever it may be, can be represented by some math-

ematical function that we will write as y(x, 0) 5 f(x). This function describes the 

transverse position y of the element of the string located at each value of x at time 

t 5 0. Because the speed of the pulse is v, the pulse has traveled to the right a 

distance vt at the time t (Fig. 16.5b). We assume the shape of the pulse does not 

change with time. Therefore, at time t, the shape of the pulse is the same as it was 

at time t 5 0 as in Figure 16.5a. Consequently, an element of the string at x at this 

time has the same y position as an element located at x 2 vt had at time t 5 0:

 y(x, t) 5 y(x 2 vt, 0) 

 In general, then, we can represent the transverse position y for all positions and 

times, measured in a stationary frame with the origin at O, as

 y(x, t) 5 f(x 2 vt) (16.1)

Similarly, if the pulse travels to the left, the transverse positions of elements of the 

string are described by

 y(x, t) 5 f(x 1 vt) (16.2)

 The function y, sometimes called the wave function, depends on the two vari-

ables x and t. For this reason, it is often written y(x, t), which is read “y as a function 

of x and t.”
 It is important to understand the meaning of y. Consider an element of the 

string at point P in Figure 16.5, identified by a particular value of its x coordinate. 

As the pulse passes through P, the y coordinate of this element increases, reaches 

The motion of water elements on 

the surface of deep water in which 

a wave is propagating is a combina-

tion of transverse and longitudinal 

displacements. 

ACTIVE FIGURE 16.4

The elements at the surface move 
in nearly circular paths. Each 
element is displaced both 
horizontally and vertically from its 
equilibrium position.

Trough

Velocity of
propagation

Crest

y

O

vt

x
O

y

x

P

P

vS

vS

At t � 0,  the shape of the 
pulse is given by y � f(x).

At some later time t, the shape 
of the pulse remains unchanged 
and the vertical position of an 
element of the medium at any 
point P is given by y � f(x � vt).

b

a

Figure 16.5  A one-dimensional 

pulse traveling to the right on a 

string with a speed v.
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Example 16.1 A Pulse Moving to the Right

A pulse moving to the right along the x 

axis is represented by the wave function

y 1x, t 2 5
2

1x 2 3.0t 22 1 1

where x and y are measured in centime-

ters and t is measured in seconds. Find 

expressions for the wave function at t 5 

0, t 5 1.0 s, and t 5 2.0 s.

SOLUTION

Conceptualize  Figure 16.6a shows the 

pulse represented by this wave function 

at t 5 0. Imagine this pulse moving to 

the right and maintaining its shape as 

suggested by Figures 16.6b and 16.6c.

Categorize  We categorize this example 

as a relatively simple analysis problem in 

which we interpret the mathematical rep-

resentation of a pulse.

Analyze  The wave function is of the 

form y 5 f(x 2 vt). Inspection of the 

expression for y(x, t) and comparison to 

Equation 16.1 reveal that the wave speed 

is v 5 3.0 cm/s. Furthermore, by letting 

x 2 3.0t 5 0, we find that the maximum 

value of y is given by A 5 2.0 cm.

a maximum, and then decreases to zero. The wave function y(x, t) represents the 

y coordinate—the transverse position—of any element located at position x at any 

time t. Furthermore, if t is fixed (as, for example, in the case of taking a snapshot of 

the pulse), the wave function y(x), sometimes called the waveform, defines a curve 

representing the geometric shape of the pulse at that time.

Quick Quiz 16.1  (i) In a long line of people waiting to buy tickets, the first 

person leaves and a pulse of motion occurs as people step forward to fill the 

gap. As each person steps forward, the gap moves through the line. Is the 

propagation of this gap (a) transverse or (b) longitudinal? (ii) Consider “the 

wave” at a baseball game: people stand up and raise their arms as the wave 

arrives at their location, and the resultant pulse moves around the stadium. 

Is this wave (a) transverse or (b) longitudinal?

t � 2.0 s

t � 1.0 s

t � 0

y (x, 2.0)

y (x, 1.0)

y (x, 0)

3.0 cm/s

3.0 cm/s

3.0 cm/s

y (cm)

2.0

1.5

1.0

0.5

0 1 2 3 4 5 6
x (cm)

7 8

y (cm)

2.0

1.5

1.0

0.5

0 1 2 3 4 5 6
x (cm)

7 8

y (cm)

2.0

1.5

1.0

0.5

0 1 2 3 4 5 6
x (cm)

7 8

a

b

c

Figure 16.6  (Example 16.1) 

Graphs of the function 

y(x, t) 5 2/[(x 23.0t)2 1 1] 

at (a) t 5 0, (b) t 5 1.0 s, and 

(c) t 5 2.0 s.

Write the wave function expression at t 5 0: y(x, 0) 5 
2

x 2 1 1

Write the wave function expression at t 5 1.0 s: y(x, 1.0) 5 
2

1x 2 3.0 22 1 1

Write the wave function expression at t 5 2.0 s: y(x, 2.0) 5 
2

1x 2 6.0 22 1 1

For each of these expressions, we can substitute various values of x and plot the wave function. This procedure yields the 

wave functions shown in the three parts of Figure 16.6.
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16.1 cont.

Finalize  These snapshots show that the pulse moves to the right without changing its shape and that it has a constant 

speed of 3.0 cm/s.

WHAT IF?  What if the wave function were

y 1x, t 2 5
4

1x 1 3.0t 22 1 1

How would that change the situation?

Answer  One new feature in this expression is the plus sign in the denominator rather than the minus sign. The 

new expression represents a pulse with a similar shape as that in Figure 16.6, but moving to the left as time progresses.

Another new feature here is the numerator of 4 rather than 2. Therefore, the new expression represents a pulse with 

twice the height of that in Figure 16.6.

16.2 Analysis Model: Traveling Wave 
In this section, we introduce an important wave function whose shape is shown in 

Active Figure 16.7. The wave represented by this curve is called a sinusoidal wave
because the curve is the same as that of the function sin u plotted against u. A sinu-

soidal wave could be established on the rope in Figure 16.1 by shaking the end of 

the rope up and down in simple harmonic motion.

 The sinusoidal wave is the simplest example of a periodic continuous wave and 

can be used to build more complex waves (see Section 18.8). The brown curve in 

Active Figure 16.7 represents a snapshot of a traveling sinusoidal wave at t 5 0, and 

the blue curve represents a snapshot of the wave at some later time t. Imagine two 

types of motion that can occur. First, the entire waveform in Active Figure 16.7 

moves to the right so that the brown curve moves toward the right and eventually 

reaches the position of the blue curve. This movement is the motion of the wave. If 
we focus on one element of the medium, such as the element at x 5 0, we see that 

each element moves up and down along the y axis in simple harmonic motion. This 

movement is the motion of the elements of the medium. It is important to differentiate 

between the motion of the wave and the motion of the elements of the medium.

 In the early chapters of this book, we developed several analysis models based on 

three simplification models: the particle, the system, and the rigid object. With our 

introduction to waves, we can develop a new simplification model, the wave, that 

will allow us to explore more analysis models for solving problems. An ideal particle 

has zero size. We can build physical objects with nonzero size as combinations of 

particles. Therefore, the particle can be considered a basic building block. An ideal 

wave has a single frequency and is infinitely long; that is, the wave exists throughout 

the Universe. (A wave of finite length must necessarily have a mixture of frequen-

cies.) When this concept is explored in Section 18.8, we will find that ideal waves 

can be combined to build complex waves, just as we combined particles.

 In what follows, we will develop the principal features and mathematical repre-

sentations of the analysis model of a traveling wave. This model is used in situa-

tions in which a wave moves through space without interacting with other waves or 

particles.

 Active Figure 16.8a (page 470) shows a snapshot of a wave moving through a 

medium. Active Figure 16.8b shows a graph of the position of one element of the 

medium as a function of time. A point in Active Figure 16.8a at which the displace-

ment of the element from its normal position is highest is called the crest of the 

wave. The lowest point is called the trough. The distance from one crest to the next 

is called the wavelength l (Greek letter lambda). More generally, the wavelength 

is the minimum distance between any two identical points on adjacent waves as 

shown in Active Figure 16.8a.

t � 0 t

y

x

vt
vS

A one-dimensional sinusoidal wave 

traveling to the right with a speed v. 

The brown curve represents a snap-

shot of the wave at t 5 0, and the 

blue curve represents a snapshot at 

some later time t.

ACTIVE FIGURE 16.7
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 If you count the number of seconds between the arrivals of two adjacent crests 

at a given point in space, you measure the period T of the waves. In general, the 

period is the time interval required for two identical points of adjacent waves to 

pass by a point as shown in Active Figure 16.8b. The period of the wave is the same 

as the period of the simple harmonic oscillation of one element of the medium.

 The same information is more often given by the inverse of the period, which is 

called the frequency f. In general, the frequency of a periodic wave is the number 

of crests (or troughs, or any other point on the wave) that pass a given point in a 

unit time interval. The frequency of a sinusoidal wave is related to the period by the 

expression

f 5
1

T
 (16.3)

The frequency of the wave is the same as the frequency of the simple harmonic 

oscillation of one element of the medium. The most common unit for frequency, 

as we learned in Chapter 15, is s21, or hertz (Hz). The corresponding unit for T is 

seconds.

 The maximum position of an element of the medium relative to its equilibrium 

position is called the amplitude A of the wave as indicated in Active Figure 16.8.

 Waves travel with a specific speed, and this speed depends on the properties 

of the medium being disturbed. For instance, sound waves travel through room-

 temperature air with a speed of about 343 m/s (781 mi/h), whereas they travel 

through most solids with a speed greater than 343 m/s.

 Consider the sinusoidal wave in Active Figure 16.8a, which shows the position of 

the wave at t 5 0. Because the wave is sinusoidal, we expect the wave function at this 

instant to be expressed as y(x, 0) 5 A sin ax, where A is the amplitude and a is a con-

stant to be determined. At x 5 0, we see that y(0, 0) 5 A sin a(0) 5 0, consistent with 

Active Figure 16.8a. The next value of x for which y is zero is x 5 l/2. Therefore,

y al

2
, 0b 5 A sin aa 

l

2
b 5 0

For this equation to be true, we must have al/2 5 p, or a 5 2p/l. Therefore, the 

function describing the positions of the elements of the medium through which 

the sinusoidal wave is traveling can be written

 y 1x, 0 2 5 A sin a2p

l
 xb (16.4)

where the constant A represents the wave amplitude and the constant l is the wave-

length. Notice that the vertical position of an element of the medium is the same 

whenever x is increased by an integral multiple of l. Based on our discussion of 

Equation 16.1, if the wave moves to the right with a speed v, the wave function at 

some later time t is

 y 1x, t 2 5 A sin c2p

l
1x 2 vt 2 d  (16.5)

If the wave were traveling to the left, the quantity x 2 vt would be replaced by x 1 vt 
as we learned when we developed Equations 16.1 and 16.2.

 By definition, the wave travels through a displacement Dx equal to one wave-

length l in a time interval Dt of one period T. Therefore, the wave speed, wave-

length, and period are related by the expression

 v 5
Dx
Dt

5
l

T
 (16.6)

Substituting this expression for v into Equation 16.5 gives

 y 5 A sin c2pa x
l

2
t
T
b d  (16.7)

y

x

T

y

t

A

A

T

l

l

The wavelength l of a wave is 
the distance between adjacent 
crests or adjacent troughs.

The period T of a wave is the 
time interval required for the 
element to complete one cycle 
of its oscillation and for the 
wave to travel one wavelength.

a

b

(a) A snapshot of a sinusoidal wave. 

(b) The position of one element of 

the medium as a function of time.

ACTIVE FIGURE 16.8

Pitfall Prevention 16.1
What’s the Difference Between 
Active Figures 16.8a and 16.8b?
Notice the visual similarity between 

Active Figures 16.8a and 16.8b. 

The shapes are the same, but (a) is 

a graph of vertical position versus 

horizontal position, whereas (b) is 

vertical position versus time. Active 

Figure 16.8a is a pictorial representa-

tion of the wave for a series of elements 
of the medium; it is what you would see 

at an instant of time. Active Figure 

16.8b is a graphical representation 

of the position of one element of the 
medium as a function of time. That 

both figures have the identical shape 

represents Equation 16.1: a wave is 

the same function of both x and t.
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This form of the wave function shows the periodic nature of y. Note that we will often 

use y rather than y(x, t) as a shorthand notation. At any given time t, y has the same 
value at the positions x, x 1 l, x 1 2l, and so on. Furthermore, at any given position 

x, the value of y is the same at times t, t 1 T, t 1 2T, and so on.

 We can express the wave function in a convenient form by defining two other 

quantities, the angular wave number k (usually called simply the wave number) 

and the angular frequency v:

 k ;
2p

l
 (16.8)

 v ;
2p

T
5 2pf  (16.9)

Using these definitions, Equation 16.7 can be written in the more compact form

 y 5 A sin (kx 2 vt) (16.10)

 Using Equations 16.3, 16.8, and 16.9, the wave speed v originally given in Equa-

tion 16.6 can be expressed in the following alternative forms:

 v 5
v

k
 (16.11)

 v 5 lf (16.12)

 The wave function given by Equation 16.10 assumes the vertical position y of an 

element of the medium is zero at x 5 0 and t 5 0. That need not be the case. If it is 

not, we generally express the wave function in the form

 y 5 A sin (kx 2 vt 1 f) (16.13)

where f is the phase constant, just as we learned in our study of periodic motion in 

Chapter 15. This constant can be determined from the initial conditions. The pri-

mary equations in the mathematical representation of the traveling wave analysis 

model are Equations 16.3, 16.10, and 16.12.

Quick Quiz 16.2  A sinusoidal wave of frequency f is traveling along a stretched 

string. The string is brought to rest, and a second traveling wave of frequency 

2f is established on the string. (i) What is the wave speed of the second wave? 

(a) twice that of the first wave (b) half that of the first wave (c) the same as 

that of the first wave (d) impossible to determine (ii) From the same choices, 

describe the wavelength of the second wave. (iii) From the same choices, 

describe the amplitude of the second wave.

Angular wave number

Angular frequency 

 Wave function for a  
sinusoidal wave

Speed of a sinusoidal wave 

 General expression for a 
sinusoidal wave

Example 16.2 A Traveling Sinusoidal Wave

A sinusoidal wave traveling in the positive x direction 

has an amplitude of 15.0 cm, a wavelength of 40.0 cm, 

and a frequency of 8.00 Hz. The vertical position of 

an element of the medium at t 5 0 and x 5 0 is also 

15.0 cm as shown in Figure 16.9.

(A)  Find the wave number k, period T, angular fre-

quency v, and speed v of the wave.

SOLUTION

Conceptualize  Figure 16.9 shows the wave at t 5 0. Imagine this wave moving to the right and maintaining its shape.

y (cm)

40.0 cm

15.0 cm
x (cm)Figure 16.9  (Example 16.2) A 

sinusoidal wave of wavelength 

l 5 40.0 cm and amplitude 

A 5 15.0 cm.

continued
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16.2 cont.

Categorize  We will evaluate parameters of the wave using equations generated in the preceding discussion, so we catego-

rize this example as a substitution problem.

Evaluate the wave number from Equation 16.8: k 5
2p

l
5

2p rad

40.0 cm
5   15.7 rad/m

Evaluate the period of the wave from Equation 16.3: T 5
1

f
5

1

8.00 s21
5   0.125 s

Evaluate the angular frequency of the wave from Equa-

tion 16.9:

v 5 2pf  5 2p(8.00 s21) 5   50.3 rad/s

Evaluate the wave speed from Equation 16.12: v 5 lf 5 (40.0 cm)(8.00 s21) 5   3.20 m/s

Substitute A 5 15.0 cm, y 5 15.0 cm, x 5 0, and t 5 0 

into Equation 16.13:

15.0 5 115.0 2  sin f S  sin f 5 1 S f 5
p

2
 rad

Write the wave function: y 5 A sin akx 2 vt 1
p

2
b 5 A cos 1kx 2 vt 2

(B)  Determine the phase constant f and write a general expression for the wave function.

SOLUTION

Substitute the values for A, k, and v in SI units into this 

expression:

y 5   0.150 cos (15.7x 2 50.3t)

Sinusoidal Waves on Strings

In Figure 16.1, we demonstrated how to create a pulse by jerking a taut string up 

and down once. To create a series of such pulses—a wave—let’s replace the hand 

with an oscillating blade vibrating in simple harmonic motion. Active Figure 16.10 

represents snapshots of the wave created in this way at intervals of T/4. Because the 

end of the blade oscillates in simple harmonic motion, each element of the string, 

such as that at P, also oscillates vertically with simple harmonic motion. Therefore, 

every element of the string can be treated as a simple harmonic oscillator vibrating 

with a frequency equal to the frequency of oscillation of the blade.2 Notice that 

while each element oscillates in the y direction, the wave travels in the x direction 

with a speed v. Of course, that is the definition of a transverse wave.

 If we define t 5 0 as the time for which the configuration of the string is as 

shown in Active Figure 16.10a, the wave function can be written as

y 5 A sin (kx 2 vt)

We can use this expression to describe the motion of any element of the string. An 

element at point P (or any other element of the string) moves only vertically, and 

so its x coordinate remains constant. Therefore, the transverse speed vy (not to be 

confused with the wave speed v) and the transverse acceleration ay of elements of 

the string are

 vy 5
dy

dt
d

x5constant

5
'y

't
5 2vA cos 1kx 2 vt 2  (16.14)

 ay 5
dvy

dt
d

x5constant

5
'vy

't
5 2v2 A sin 1kx 2 vt 2  (16.15)

2In this arrangement, we are assuming that a string element always oscillates in a vertical line. The tension in the 

string would vary if an element were allowed to move sideways. Such motion would make the analysis very complex.

P

t = 0

t =     T

A

P

P

P

l

4
1

t =     T
2
1

t =     T
4
3

a

b

c

d

x

y

One method for producing a sinu-

soidal wave on a string. The left end 

of the string is connected to a blade 

that is set into oscillation. Every 

element of the string, such as that 

at point P, oscillates with simple 

harmonic motion in the vertical 

direction.

ACTIVE FIGURE 16.10
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These expressions incorporate partial derivatives because y depends on both x and 

t. In the operation 'y/'t, for example, we take a derivative with respect to t while 

holding x constant. The maximum magnitudes of the transverse speed and trans-

verse acceleration are simply the absolute values of the coefficients of the cosine 

and sine functions:

 vy,max 5 vA (16.16)

 ay,max 5 v2A (16.17)

The transverse speed and transverse acceleration of elements of the string do not 

reach their maximum values simultaneously. The transverse speed reaches its max-

imum value (vA) when y 5 0, whereas the magnitude of the transverse acceleration 

reaches its maximum value (v2A) when y 5 6A. Finally, Equations 16.16 and 16.17 

are identical in mathematical form to the corresponding equations for simple har-

monic motion, Equations 15.17 and 15.18.

Quick Quiz 16.3  The amplitude of a wave is doubled, with no other changes 

made to the wave. As a result of this doubling, which of the following state-

ments is correct? (a) The speed of the wave changes. (b) The frequency of 

the wave changes. (c) The maximum transverse speed of an element of the 

medium changes. (d) Statements (a) through (c) are all true. (e) None of 

statements (a) through (c) is true.

16.3 The Speed of Waves on Strings
In this section, we determine the speed of a transverse pulse traveling on a taut 

string. Let’s first conceptually predict the parameters that determine the speed. 

If a string under tension is pulled sideways and then released, the force of tension 

is responsible for accelerating a particular element of the string back toward its 

equilibrium position. According to Newton’s second law, the acceleration of the ele-

ment increases with increasing tension. If the element returns to equilibrium more 

rapidly due to this increased acceleration, we would intuitively argue that the wave 

speed is greater. Therefore, we expect the wave speed to increase with increasing 

tension.

 Likewise, because it is more difficult to accelerate an element of a massive string 

than that of a light string, the wave speed should decrease as the mass per unit 

length of the string increases. If the tension in the string is T and its mass per unit 

length is m (Greek letter mu), the wave speed, as we shall show, is

 v 5 Å
T
m

  (16.18)

 Let us use a mechanical analysis to derive Equation 16.18. Consider a pulse mov-

ing on a taut string to the right with a uniform speed v measured relative to a sta-

tionary frame of reference as shown in Figure 16.11a (page 474). Instead of staying 

in this reference frame, it is more convenient to choose a different inertial refer-

ence frame that moves along with the pulse with the same speed as the pulse so 

that the pulse is at rest within the frame. This change of reference frame is permit-

ted because Newton’s laws are valid in either a stationary frame or one that moves 

with constant velocity. In our new reference frame, shown in the magnified view 

of Figure 16.11b, all elements of the string move to the left: a given element of the 

string initially to the right of the pulse moves to the left, rises up and follows the 

shape of the pulse, and then continues to move to the left. Both parts of Figure 

16.11 show such an element at the instant it is located at the top of the pulse.

 The small element of the string of length Ds forms an approximate arc of a circle 

of radius R. In the moving frame of reference (which moves to the right at a speed 

v along with the pulse), the shaded element moves to the left with a speed v. This 

 Speed of a wave on a  
stretched string

Pitfall Prevention 16.2
Two Kinds of Speed/Velocity
Do not confuse v, the speed of 

the wave as it propagates along

the string, with vy, the transverse 

velocity of a point on the string. 

The speed v is constant for a uni-

form medium, whereas vy varies 

sinusoidally.

Pitfall Prevention 16.3
Multiple Ts
Do not confuse the T in Equation 

16.18 for the tension with the symbol 

T used in this chapter for the period 

of a wave. The context of the equa-

tion should help you identify which 

quantity is meant. There simply 

aren’t enough letters in the alphabet 

to assign a unique letter to each 

variable!
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element has a centripetal acceleration equal to v2/R, which is supplied by compo-

nents of the force T
S

 whose magnitude is the tension in the string. The force T
S

 acts 

on both sides of the element and is tangent to the arc as shown in Figure 16.11b. 

The horizontal components of T
S

 cancel, and each vertical component T sin u acts 

downward. Hence, the total force on the element is 2T sin u toward the arc’s center. 

Because the element is small, u is small, and we can therefore use the small-angle 

approximation sin u < u. So, the total radial force is

Fr 5 2T sin u < 2T u

The element has a mass m 5 m Ds. Because the element forms part of a circle and 

subtends an angle 2u at the center, Ds 5 R(2u), and

m 5 m Ds 5 2mR u

Applying Newton’s second law to this element in the radial direction gives

Fr 5 ma 5
mv 2

R

2T u 5
2mR uv 2

R
 S  v 5 Å

T
m

 

This expression for v is Equation 16.18.

 Notice that this derivation is based on the assumption that the pulse height is 

small relative to the length of the string. Using this assumption, we were able to use 

the approximation sin u < u. Furthermore, the model assumes the tension T is not 

affected by the presence of the pulse; therefore, T is the same at all points on the 

string. Finally, this proof does not assume any particular shape for the pulse. There-

fore, a pulse of any shape travels along the string with speed v 5 !T/m without any 

change in pulse shape.

Quick Quiz 16.4  Suppose you create a pulse by moving the free end of a taut 

string up and down once with your hand beginning at t 5 0. The string is 

attached at its other end to a distant wall. The pulse reaches the wall at time 

t. Which of the following actions, taken by itself, decreases the time interval 

required for the pulse to reach the wall? More than one choice may be cor-

rect. (a) moving your hand more quickly, but still only up and down once by 

the same amount (b) moving your hand more slowly, but still only up and 

down once by the same amount (c) moving your hand a greater distance up 

and down in the same amount of time (d) moving your hand a lesser dis-

tance up and down in the same amount of time (e) using a heavier string of 

the same length and under the same tension (f) using a lighter string of the 

same length and under the same tension (g) using a string of the same linear 

mass density but under decreased tension (h) using a string of the same lin-

ear mass density but under increased tension

s�

O

s

R

�

u

u

u

vS

vS

T
S

T
S

a

b

Figure 16.11  (a) In the reference 

frame of the Earth, a pulse moves 

to the right on a string with speed v. 

(b) In a frame of reference moving 

to the right with the pulse, the small 

element of length Ds moves to the 

left with speed v.

Example 16.3 The Speed of a Pulse on a Cord

A uniform string has a mass of 0.300 kg and a length of 

6.00 m (Fig. 16.12). The string passes over a pulley and sup-

ports a 2.00-kg object. Find the speed of a pulse traveling 

along this string.

SOLUTION

Conceptualize  In Figure 16.12, the hanging block estab-

lishes a tension in the horizontal string. This tension determines the speed with which waves move on the string.

2.00 kg

Figure 16.12  (Example 1 6.3) 

The tension T in the cord is 

maintained by the suspended 

object. The speed of any wave 

traveling along the cord is 

given by v 5 !T/m.
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16.3 cont.

Categorize  To find the tension in the string, we model the hanging block as a particle in equilibrium. Then we use the 

tension to evaluate the wave speed on the string using Equation 16.18.

Analyze  Apply the particle in equilibrium model to the 

block:
o Fy 5 T 2 mblockg 5 0

Solve for the tension in the string: T 5 mblockg

Use Equation 16.18 to find the wave speed, using m 5 

mstring/, for the linear mass density of the string:

v 5 Å
T
m

5 Å
mblockg ,

m string

Evaluate the wave speed: v 5 Å
12.00 kg 2 19.80 m/s2 2 16.00 m 2

0.300 kg
5   19.8 m/s

Finalize  The calculation of the tension neglects the small mass of the string. Strictly speaking, the string can never be 

exactly straight; therefore, the tension is not uniform.

WHAT IF?  What if the block were swinging back and forth with respect to the vertical like a pendulum? How would 

that affect the wave speed on the string?

Answer  The swinging block is categorized as a particle under a net force. The magnitude of one of the forces on the 

block is the tension in the string, which determines the wave speed. As the block swings, the tension changes, so the wave 

speed changes.

 When the block is at the bottom of the swing, the string is vertical and the tension is larger than the weight of the 

block because the net force must be upward to provide the centripetal acceleration of the block. Therefore, the wave 

speed must be greater than 19.8 m/s.

 When the block is at its highest point at the end of a swing, it is momentarily at rest, so there is no centripetal accelera-

tion at that instant. The block is a particle in equilibrium in the radial direction. The tension is balanced by a component 

of the gravitational force on the block. Therefore, the tension is smaller than the weight and the wave speed is less than 

19.8 m/s. With what frequency does the speed of the wave vary? Is it the same frequency as the pendulum? 

Example 16.4 Rescuing the Hiker

An 80.0-kg hiker is trapped on a mountain ledge following a storm. A helicopter rescues the hiker by hovering above him 

and lowering a cable to him. The mass of the cable is 8.00 kg, and its length is 15.0 m. A sling of mass 70.0 kg is attached 

to the end of the cable. The hiker attaches himself to the sling, and the helicopter then accelerates upward. Terrified by 

hanging from the cable in midair, the hiker tries to signal the pilot by sending transverse pulses up the cable. A pulse 

takes 0.250 s to travel the length of the cable. What is the acceleration of the helicopter? Assume the tension in the cable 

is uniform.

SOLUTION

Conceptualize  Imagine the effect of the acceleration of the helicopter on the cable. The greater the upward accelera-

tion, the larger the tension in the cable. In turn, the larger the tension, the higher the speed of pulses on the cable.

Categorize  This problem is a combination of one involving the speed of pulses on a string and one in which the hiker 

and sling are modeled as a particle under a net force.

continued

Analyze  Use the time interval for the pulse to travel 

from the hiker to the helicopter to find the speed of the 

pulses on the cable:

v 5
Dx
Dt

5
15.0 m

0.250 s
5 60.0 m/s

Solve Equation 16.18 for the tension in the cable: v 5 Å
T
m

  S  T 5 mv 2

27819_16_c16_p465-487.indd   475 6/30/09   3:39:15 PM

Prop
ert

y 

Prop
ert

y  Rescuing the Hiker

Prop
ert

y  Rescuing the Hiker

An 80.0-kg hiker is trapped on a mountain ledge following a storm. A helicopter rescues the hiker by hovering above him 

Prop
ert

y 
An 80.0-kg hiker is trapped on a mountain ledge following a storm. A helicopter rescues the hiker by hovering above him 

and lowering a cable to him. The mass of the cable is 8.00 kg, and its length is 15.0 m. A sling of mass 70.0 kg is attached 

Prop
ert

y 
and lowering a cable to him. The mass of the cable is 8.00 kg, and its length is 15.0 m. A sling of mass 70.0 kg is attached 

to the end of the cable. The hiker attaches himself to the sling, and the helicopter then accelerates upward. Terrified by 

Prop
ert

y 
to the end of the cable. The hiker attaches himself to the sling, and the helicopter then accelerates upward. Terrified by 

hanging from the cable in midair, the hiker tries to signal the pilot by sending transverse pulses up the cable. A pulse 

Prop
ert

y 

hanging from the cable in midair, the hiker tries to signal the pilot by sending transverse pulses up the cable. A pulse 

takes 0.250 s to travel the length of the cable. What is the acceleration of the helicopter? Assume the tension in the cable Prop
ert

y 

takes 0.250 s to travel the length of the cable. What is the acceleration of the helicopter? Assume the tension in the cable 

of of  Rescuing the Hikerof  Rescuing the Hiker

Cen
ga

ge
 

Cen
ga

ge
 

Cen
ga

ge
 ck is the tension in the string, which determines the wave speed. As the block swings, the tension changes, so the wave 

Cen
ga

ge
 ck is the tension in the string, which determines the wave speed. As the block swings, the tension changes, so the wave 

 When the block is at the bottom of the swing, the string is vertical and the tension is larger than the weight of the 

Cen
ga

ge
 

 When the block is at the bottom of the swing, the string is vertical and the tension is larger than the weight of the 

block because the net force must be upward to provide the centripetal acceleration of the block. Therefore, the wave 

Cen
ga

ge
 

block because the net force must be upward to provide the centripetal acceleration of the block. Therefore, the wave 

 When the block is at its highest point at the end of a swing, it is momentarily at rest, so there is no centripetal accelera-

Cen
ga

ge
 

 When the block is at its highest point at the end of a swing, it is momentarily at rest, so there is no centripetal accelera-

tion at that instant. The block is a particle in equilibrium in the radial direction. The tension is balanced by a component 

Cen
ga

ge
 

tion at that instant. The block is a particle in equilibrium in the radial direction. The tension is balanced by a component 

of the gravitational force on the block. Therefore, the tension is smaller than the weight and the wave speed is less than 

Cen
ga

ge
 

of the gravitational force on the block. Therefore, the tension is smaller than the weight and the wave speed is less than 

19.8 m/s. With what frequency does the speed of the wave vary? Is it the same frequency as the pendulum? Cen
ga

ge
 

19.8 m/s. With what frequency does the speed of the wave vary? Is it the same frequency as the pendulum? 

Le
arn

ing

Le
arn

ing

Le
arn

ingThe calculation of the tension neglects the small mass of the string. Strictly speaking, the string can never be 

Le
arn

ingThe calculation of the tension neglects the small mass of the string. Strictly speaking, the string can never be 

What if the block were swinging back and forth with respect to the vertical like a pendulum? How would 

Le
arn

ing
What if the block were swinging back and forth with respect to the vertical like a pendulum? How would 

The swinging block is categorized as a particle under a net force. The magnitude of one of the forces on the Le
arn

ing

The swinging block is categorized as a particle under a net force. The magnitude of one of the forces on the 

ck is the tension in the string, which determines the wave speed. As the block swings, the tension changes, so the wave Le
arn

ing

ck is the tension in the string, which determines the wave speed. As the block swings, the tension changes, so the wave 



476 CHAPTER 16 | Wave Motion

16.4 cont.

16.4 Reflection and Transmission
The traveling wave model describes waves traveling through a uniform medium 

without interacting with anything along the way. We now consider how a traveling 

wave is affected when it encounters a change in the medium. For example, consider 

a pulse traveling on a string that is rigidly attached to a support at one end as in 

Active Figure 16.13. When the pulse reaches the support, a severe change in the 

medium occurs: the string ends. As a result, the pulse undergoes reflection; that is, 

the pulse moves back along the string in the opposite direction.

 Notice that the reflected pulse is inverted. This inversion can be explained as 

follows. When the pulse reaches the fixed end of the string, the string produces 

an upward force on the support. By Newton’s third law, the support must exert an 

equal-magnitude and oppositely directed (downward) reaction force on the string. 

This downward force causes the pulse to invert upon reflection.

 Now consider another case. This time, the pulse arrives at the end of a string 

that is free to move vertically as in Active Figure 16.14. The tension at the free end is 

maintained because the string is tied to a ring of negligible mass that is free to slide 

vertically on a smooth post without friction. Again, the pulse is reflected, but this 

time it is not inverted. When it reaches the post, the pulse exerts a force on the free 

end of the string, causing the ring to accelerate upward. The ring rises as high as 

the incoming pulse, and then the downward component of the tension force pulls 

the ring back down. This movement of the ring produces a reflected pulse that is 

not inverted and that has the same amplitude as the incoming pulse.

 Finally, consider a situation in which the boundary is intermediate between 

these two extremes. In this case, part of the energy in the incident pulse is reflected 

and part undergoes transmission; that is, some of the energy passes through the 

boundary. For instance, suppose a light string is attached to a heavier string as in 

Active Figure 16.15. When a pulse traveling on the light string reaches the bound-

ary between the two strings, part of the pulse is reflected and inverted and part is 

transmitted to the heavier string. The reflected pulse is inverted for the same rea-

sons described earlier in the case of the string rigidly attached to a support.

 The reflected pulse has a smaller amplitude than the incident pulse. In Section 

16.5, we show that the energy carried by a wave is related to its amplitude. Accord-

ing to the principle of the conservation of energy, when the pulse breaks up into a 

reflected pulse and a transmitted pulse at the boundary, the sum of the energies of 

these two pulses must equal the energy of the incident pulse. Because the reflected 

Model the hiker and sling as a particle under a net force, 

noting that the acceleration of this particle of mass m is 

the same as the acceleration of the helicopter:

o F 5 ma  S  T 2 mg 5 ma

Solve for the acceleration: a 5
T
m

2 g 5
mv 2

m
2 g 5

m cable v
2

,cablem
2 g

Substitute numerical values: a 5
18.00 kg 2 160.0 m/s 22
115.0 m 2 1150.0 kg 2 2 9.80 m/s2 5   3.00 m/s2

Finalize  A real cable has stiffness in addition to tension. Stiffness tends to return a wire to its original straight-line 

shape even when it is not under tension. For example, a piano wire straightens if released from a curved shape; package-

wrapping string does not.

 Stiffness represents a restoring force in addition to tension and increases the wave speed. Consequently, for a real 

cable, the speed of 60.0 m/s that we determined is most likely associated with a smaller acceleration of the helicopter.

Reflected
pulse

Incident
pulse

b

c

a

The reflection of a traveling pulse at 

the fixed end of a stretched string. 

The reflected pulse is inverted, but 

its shape is otherwise unchanged.

ACTIVE FIGURE 16.13

Incident
pulse

Reflected
pulse

b

c

a

The reflection of a traveling pulse 

at the free end of a stretched string. 

The reflected pulse is not inverted.

ACTIVE FIGURE 16.14
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pulse contains only part of the energy of the incident pulse, its amplitude must be 

smaller.

 When a pulse traveling on a heavy string strikes the boundary between the heavy 

string and a lighter one as in Active Figure 16.16, again part is reflected and part is 

transmitted. In this case, the reflected pulse is not inverted.

 In either case, the relative heights of the reflected and transmitted pulses depend 

on the relative densities of the two strings. If the strings are identical, there is no 

discontinuity at the boundary and no reflection takes place.

 According to Equation 16.18, the speed of a wave on a string increases as the 

mass per unit length of the string decreases. In other words, a wave travels more 

slowly on a heavy string than on a light string if both are under the same tension. 

The following general rules apply to reflected waves: When a wave or pulse travels 

from medium A to medium B and vA . vB (that is, when B is denser than A), it is 

inverted upon reflection. When a wave or pulse travels from medium A to medium 

B and vA , vB (that is, when A is denser than B), it is not inverted upon reflection.

16.5 Rate of Energy Transfer 
by Sinusoidal Waves on Strings

Waves transport energy through a medium as they propagate. For example, suppose 

an object is hanging on a stretched string and a pulse is sent down the string as in 

Figure 16.17a. When the pulse meets the suspended object, the object is momen-

tarily displaced upward as in Figure 16.17b. In the process, energy is transferred to 

the object and appears as an increase in the gravitational potential energy of the 

object–Earth system. This section examines the rate at which energy is transported 

along a string. We shall assume a one-dimensional sinusoidal wave in the calcula-

tion of the energy transferred.

 Consider a sinusoidal wave traveling on a string (Fig. 16.18 on page 478). The 

source of the energy is some external agent at the left end of the string. We can 

consider the string to be a nonisolated system. As the external agent performs work 

on the end of the string, moving it up and down, energy enters the system of the 

string and propagates along its length. Let’s focus our attention on an infinitesimal 

element of the string of length dx and mass dm. Each such element moves vertically 

with simple harmonic motion. Therefore, we can model each element of the string 

as a simple harmonic oscillator, with the oscillation in the y direction. All elements 

have the same angular frequency v and the same amplitude A. The kinetic energy 

Incident
pulse

The reflected pulse is 
inverted and a non-inverted 
transmitted pulse moves on 
the heavier string.

b

a

(a) A pulse traveling to the right on a light string 

approaches the junction with a heavier string. (b) The 

situation after the pulse reaches the junction.

ACTIVE FIGURE 16.15

(a) A pulse traveling to the right on a heavy string 

approaches the junction with a lighter string. (b) The 

situation after the pulse reaches the junction.

ACTIVE FIGURE 16.16

Incident
pulse

The reflected pulse is not 
inverted and a transmitted pulse 
moves on the lighter string.

a

b

The pulse lifts the block, 
increasing the gravitational 
potential energy of the 
block-Earth system.

m

m

a

b

Figure 16.17  (a) A pulse travels to 

the right on a stretched string, car-

rying energy with it. (b) The energy 

of the pulse arrives at the hanging 

block.
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K associated with a moving particle is K 5
1
2mv 2. If we apply this equation to the 

infinitesimal element, the kinetic energy dK associated with the up and down 

motion of this element is

 dK 5
1
2 1dm 2vy

2 

where vy is the transverse speed of the element. If m is the mass per unit length of 

the string, the mass dm of the element of length dx is equal to m dx. Hence, we can 

express the kinetic energy of an element of the string as

 dK 5
1
2 1m dx 2vy

2 (16.19)

Substituting for the general transverse speed of an element of the medium using 

Equation 16.14 gives

dK 5
1
2m 32vA cos 1kx 2 vt 2 42 dx 5

1
2mv2A2 cos2 1kx 2 vt 2  dx

If we take a snapshot of the wave at time t 5 0, the kinetic energy of a given ele-

ment is

dK 5
1
2mv2 A2 cos2 kx dx

Integrating this expression over all the string elements in a wavelength of the wave 

gives the total kinetic energy Kl in one wavelength:

 Kl 5 3dK 5 3
l

0

 
1
2 mv2A2 cos2 kx dx 5

1
2 mv2A2 3

l

0

 cos2 kx dx

 5 1
2mv2A2 c12x 1

1

4k
 sin 2kx d l

0

5
1
2 mv2A2 312l 4 5

1
4 mv2A2l

In addition to kinetic energy, there is potential energy associated with each ele-

ment of the string due to its displacement from the equilibrium position and the 

restoring forces from neighboring elements. A similar analysis to that above for the 

total potential energy Ul in one wavelength gives exactly the same result:

 Ul 5
1
4 mv2A2l 

The total energy in one wavelength of the wave is the sum of the potential and 

kinetic energies:

 El 5 Ul 1 Kl 5
1
2 mv2A2l (16.20)

As the wave moves along the string, this amount of energy passes by a given point 

on the string during a time interval of one period of the oscillation. Therefore, the 

power P, or rate of energy transfer TMW associated with the mechanical wave, is

P 5
TMW

Dt
5

El

T
5

1
2mv2A2l

T
5

1
2 mv2A2 al

T
b

 P 5
1
2mv2A2v (16.21)

Equation 16.21 shows that the rate of energy transfer by a sinusoidal wave on a string 

is proportional to (a) the square of the frequency, (b) the square of the amplitude, 

and (c) the wave speed. In fact, the rate of energy transfer in any sinusoidal wave 

is proportional to the square of the angular frequency and to the square of the 

amplitude.

Quick Quiz 16.5  Which of the following, taken by itself, would be most effec-

tive in increasing the rate at which energy is transferred by a wave traveling 

along a string? (a) reducing the linear mass density of the string by one half 

(b) doubling the wavelength of the wave (c) doubling the tension in the 

string (d) doubling the amplitude of the wave

Power of a wave 

dm

Each element of the string is a 
simple harmonic oscillator and 
therefore has kinetic energy and 
potential energy associated with it.

Figure 16.18  A sinusoidal wave 

traveling along the x axis on a 

stretched string. 
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Example 16.5 Power Supplied to a Vibrating String

A taut string for which m 5 5.00 3 1022 kg/m is under a tension of 80.0 N. How much power must be supplied to the 

string to generate sinusoidal waves at a frequency of 60.0 Hz and an amplitude of 6.00 cm?

SOLUTION

Conceptualize  Consider Active Figure 16.10 again and notice that the vibrating blade supplies energy to the string at a 

certain rate. This energy then propagates to the right along the string.

Categorize  We evaluate quantities from equations developed in the chapter, so we categorize this example as a substitu-

tion problem.

Use Equation 16.21 to evaluate the power: P 5
1
2 mv2A2v

Use Equations 16.9 and 16.18 to substitute 

for v and v:

P 5
1
2m 12pf 22A2aÅ

T
m
b 5 2p 2f 2A2"mT

Substitute numerical values: P 5 2p 2 160.0 Hz 22 10.060 0 m 22"10.050 0 kg/m 2 180.0 N 2 5   512 W

WHAT IF? What if the string is to transfer energy at a rate of 1 000 W? What must be the required amplitude if all other 

parameters remain the same?

Answer  Let us set up a ratio of the new and old power, reflecting only a change in the amplitude:

Pnew

Pold

5

1
2 mv2A2

new v
1
2 mv2A2

old v
5

A2
new

A2
old

Solving for the new amplitude gives

Anew 5 AoldÅ
Pnew

Pold

5 16.00 cm 2Å
1 000 W

512 W
5 8.39 cm

16.6 The Linear Wave Equation
In Section 16.1, we introduced the concept of the wave function to represent waves 

traveling on a string. All wave functions y(x, t) represent solutions of an equation 

called the linear wave equation. This equation gives a complete description of the 

wave motion, and from it one can derive an expression for the wave speed. Further-

more, the linear wave equation is basic to many forms of wave motion. In this sec-

tion, we derive this equation as applied to waves on strings.

 Suppose a traveling wave is propagating along a string that is under a tension T. 

Let’s consider one small string element of length Dx (Fig. 16.19). The ends of the 

element make small angles uA and uB with the x axis. The net force acting on the ele-

ment in the vertical direction is

 o Fy 5 T sin uB 2 T sin uA 5 T(sin uB 2 sin uA) 

Because the angles are small, we can use the approximation sin u < tan u to express 

the net force as

 o Fy < T(tan uB 2 tan uA) (16.22)

Imagine undergoing an infinitesimal displacement outward from the right end of 

the rope element in Figure 16.19 along the blue line representing the force T
S

. This 

displacement has infinitesimal x and y components and can be represented by the 

vector dx i^ 1 dy j^. The tangent of the angle with respect to the x axis for this dis-

placement is dy/dx. Because we evaluate this tangent at a particular instant of time, 

B

A

x

A

B�
u

u

T
S

T
S

Figure 16.19  An element of a string 

under tension T.

27819_16_c16_p465-487.indd   479 6/30/09   12:26:57 PM

Prop
ert

y 

Prop
ert

y The Linear Wave Equation

Prop
ert

y The Linear Wave Equation
In Section 16.1, we introduced the concept of the wave function to represent waves 

Prop
ert

y 
In Section 16.1, we introduced the concept of the wave function to represent waves 

traveling on a string. All wave functions 

Prop
ert

y 
traveling on a string. All wave functions 

linear wave equation

Prop
ert

y 
linear wave equation. This equation gives a complete description of the 

Prop
ert

y 
. This equation gives a complete description of the 

Prop
ert

y 
wave motion, and from it one can derive an expression for the wave speed. Further-

Prop
ert

y 
wave motion, and from it one can derive an expression for the wave speed. Further-

more, the linear wave equation is basic to many forms of wave motion. In this sec-Prop
ert

y 

more, the linear wave equation is basic to many forms of wave motion. In this sec-

tion, we derive this equation as applied to waves on strings.Prop
ert

y 

tion, we derive this equation as applied to waves on strings.

 Suppose a traveling wave is propagating along a string that is under a tension Prop
ert

y 

 Suppose a traveling wave is propagating along a string that is under a tension 

of of The Linear Wave Equationof
 

The Linear Wave Equation

Cen
ga

ge
 

Cen
ga

ge
 Let us set up a ratio of the new and old power, reflecting only a change in the amplitude:

Cen
ga

ge
 Let us set up a ratio of the new and old power, reflecting only a change in the amplitude:

new

Cen
ga

ge
 

new v

Cen
ga

ge
 

v

Cen
ga

ge
 

A

Cen
ga

ge
 

A2

Cen
ga

ge
 

2
old

Cen
ga

ge
 

old v

Cen
ga

ge
 

v
5

Cen
ga

ge
 

5
A

Cen
ga

ge
 

A2

Cen
ga

ge
 

2
new

Cen
ga

ge
 

new

Cen
ga

ge
 

A

Cen
ga

ge
 

A2

Cen
ga

ge
 

2
old

Cen
ga

ge
 

old

new

Cen
ga

ge
 

new

Cen
ga

ge
 

P

Cen
ga

ge
 

Po

Cen
ga

ge
 

oPoP

Cen
ga

ge
 

PoP l

Cen
ga

ge
 

ld

Cen
ga

ge
 

d

5

Cen
ga

ge
 

5 1

Cen
ga

ge
 

16.00 cm

Cen
ga

ge
 

6.00 cm

Le
arn

ing"

Le
arn

ing"1

Le
arn

ing10.050 0 kg

Le
arn

ing0.050 0 kg

Le
arn

ing
What if the string is to transfer energy at a rate of 1 000 W? What must be the required amplitude if all other 

Le
arn

ing
What if the string is to transfer energy at a rate of 1 000 W? What must be the required amplitude if all other 

Let us set up a ratio of the new and old power, reflecting only a change in the amplitude:Le
arn

ing

Let us set up a ratio of the new and old power, reflecting only a change in the amplitude:



480 CHAPTER 16 | Wave Motion

we must express it in partial form as 'y/'x. Substituting for the tangents in Equa-

tion 16.22 gives

a  Fy < T c a'y

'x
b

B
2 a'y

'x
b

A
d  (16.23)

Now let’s apply Newton’s second law to the element, with the mass of the element 

given by m 5 m Dx:

a  Fy 5 may 5 m Dx a'
2y

't 2b (16.24)

Combining Equation 16.23 with Equation 16.24 gives

m Dx a'
2y

't 2b 5 T c a'y

'x
b

B
2 a'y

'x
b

A
d   

m

T
  
'

2y

't 2
5
1'y/'x 2B 2 1'y/dx 2A

Dx
  (16.25)

The right side of Equation 16.25 can be expressed in a different form if we note 

that the partial derivative of any function is defined as

'f

'x
; lim

Dx S 0

f 1x 1 Dx 2 2 f 1x 2
Dx

 

Associating f(x 1 Dx) with ('y/'x)B and f(x) with ('y/'x)A, we see that, in the limit 

Dx S 0, Equation 16.25 becomes

m

T
 
'

2y

't 2
5

'
2y

'x 2
 (16.26)

This expression is the linear wave equation as it applies to waves on a string.

 The linear wave equation (Eq. 16.26) is often written in the form

'
2y

'x 2
5

1

v 2
 
'

2y

't 2
 (16.27)

Equation 16.27 applies in general to various types of traveling waves. For waves on 

strings, y represents the vertical position of elements of the string. For sound waves 

propagating through a gas, y corresponds to longitudinal position of elements of 

the gas from equilibrium or variations in either the pressure or the density of the 

gas. In the case of electromagnetic waves, y corresponds to electric or magnetic 

field components.

 We have shown that the sinusoidal wave function (Eq. 16.10) is one solution of 

the linear wave equation (Eq. 16.27). Although we do not prove it here, the linear 

wave equation is satisfied by any wave function having the form y 5 f(x 6 vt). Fur-

thermore, we have seen that the linear wave equation is a direct consequence of 

Newton’s second law applied to any element of a string carrying a traveling wave.

Linear wave equation 
for a string

Linear wave equation 
in general

Summary
Definitions

A one-dimensional sinusoidal wave is one for which 

the positions of the elements of the medium vary sinu-

soidally. A sinusoidal wave traveling to the right can be 

expressed with a wave function

 y 1x, t 2 5 A sin c2p

l
1x 2 vt 2 d  (16.5)

where A is the amplitude, l is the wavelength, and v is 

the wave speed.

The angular wave number k and angular frequency v 

of a wave are defined as follows:

k ;
2p

l
 (16.8)

v ;
2p

T
5 2pf  (16.9)

where T is the period of the wave and f is its frequency.
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 1. The distance between two successive peaks of a sinusoidal 

wave traveling along a string is 2 m. If the frequency of 

this wave is 4 Hz, what is the speed of the wave? (a) 4 m/s 

(b) 1 m/s (c) 8 m/s (d) 2 m/s (e) impossible to answer from 

the information given

 2. Which of the following statements is not necessarily true 

regarding mechanical waves? (a) They are formed by some 

source of disturbance. (b) They are sinusoidal in nature. 

(c) They carry energy. (d) They require a medium through 

which to propagate. (e) The wave speed depends on the 

properties of the medium in which they travel.

 3. Rank the waves represented by the following functions 

from the largest to the smallest according to (i) their 

amplitudes, (ii) their wavelengths, (iii) their frequencies, 

(iv) their periods, and (v) their speeds. If the values of 

a quantity are equal for two waves, show them as having 

Traveling Wave.  The wave speed of a sinusoidal wave is

v 5
l

T
5 lf  (16.6, 16.12)

A sinusoidal wave can be expressed as

y 5 A sin 1kx 2 vt 2  (16.10)

Analysis Model for Problem Solving

Concepts and Principles

Any one-dimensional wave traveling with a speed v in the x direction can 

be represented by a wave function of the form

 y (x, t) 5 f(x 6 vt) (16.1, 16.2)

where the positive sign applies to a wave traveling in the negative x direc-

tion and the negative sign applies to a wave traveling in the positive x direc-

tion. The shape of the wave at any instant in time (a snapshot of the wave) 

is obtained by holding t constant.

The speed of a wave traveling on a 

taut string of mass per unit length m 

and tension T is

 v 5 Å
T
m

  (16.18)

Wave functions are solutions to a differential equation called the lin-
ear wave equation:

'
2y

'x 2
5

1

v 2
 
'

2y

't 2
 (16.27)

A wave is totally or partially reflected 

when it reaches the end of the medium in 

which it propagates or when it reaches a 

boundary where its speed changes discon-

tinuously. If a wave traveling on a string 

meets a fixed end, the wave is reflected 

and inverted. If the wave reaches a free 

end, it is reflected but not inverted.

The power transmitted by a sinusoidal wave on a stretched string is

P 5
1
2 mv2A2v  (16.21)

y

 

 
x

A

l

vS

Objective Questions denotes answer available in Student 
Solutions Manual/Study Guide

A transverse wave is one in which the elements of the 

medium move in a direction perpendicular to the direc-

tion of propagation. 

A longitudinal wave is one in which the elements of the 

medium move in a direction parallel to the direction of 

propagation.
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the speed of the pulse if you stretch the hose more tightly? 

(a) It increases. (b) It decreases. (c) It is constant. (d) It 

changes unpredictably. (ii) What happens to the speed 

if you fill the hose with water? Choose from the same 

possibilities.

 7. (a) Can a wave on a string move with a wave speed that 

is greater than the maximum transverse speed vy,max of an 

element of the string? (b) Can the wave speed be much 

greater than the maximum element speed? (c) Can the 

wave speed be equal to the maximum element speed? 

(d) Can the wave speed be less than vy,max?

 8. A source vibrating at constant frequency generates a sinu-

soidal wave on a string under constant tension. If the power 

delivered to the string is doubled, by what factor does the 

amplitude change? (a) a factor of 4 (b) a factor of 2 (c) a 

factor of !2 (d) a factor of 0.707 (e) cannot be predicted

 9. If one end of a heavy rope is attached to one end of a light-

weight rope, a wave can move from the heavy rope into the 

lighter one. (i) What happens to the speed of the wave? 

(a) It increases. (b) It decreases. (c) It is constant. (d) It 

changes unpredictably. (ii) What happens to the frequency? 

Choose from the same possibilities. (iii) What happens to 

the wavelength? Choose from the same possibilities.

equal rank. For all functions, x and y are in meters and t 
is in seconds. (a) y 5 4 sin (3x 2 15t) (b) y 5 6 cos (3x 1 

15t 2 2) (c) y 5 8 sin (2x 1 15t) (d) y 5 8 cos (4x 1 20t) 

(e) y 5 7 sin (6x 2 24t)
 4. By what factor would you have to multiply the tension in 

a stretched string so as to double the wave speed? Assume 

the string does not stretch. (a) a factor of 8 (b) a factor of 4 

(c) a factor of 2 (d) a factor of 0.5 (e) You could not change 

the speed by a predictable factor by changing the tension.

 5. When all the strings on 

a guitar (Fig. OQ16.5) 

are stretched to the 

same tension, will the 

speed of a wave along 

the most massive bass 

string be (a) faster, 

(b) slower, or (c) the 

same as the speed of 

a wave on the lighter 

strings? Alternatively, 

(d) is the speed on the bass string not necessarily any of 

these answers?

 6. If you stretch a rubber hose and pluck it, you can observe a 

pulse traveling up and down the hose. (i) What happens to 

Figure OQ16.5
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Conceptual Questions denotes answer available in Student 
Solutions Manual/Study Guide

 1. Why is a pulse on a string considered to be transverse?

 2. (a) How would you create a longitudinal wave in a stretched 

spring? (b) Would it be possible to create a transverse wave 

in a spring?

 3. When a pulse travels on a taut string, does it always invert 

upon reflection? Explain.

 4. Does the vertical speed of an element of a horizontal, taut 

string, through which a wave is traveling, depend on the 

wave speed? Explain.

 5. If you steadily shake one end of a taut rope three times 

each second, what would be the period of the sinusoidal 

wave set up in the rope?

 6. (a) If a long rope is hung from a ceiling and waves are sent 

up the rope from its lower end, why does the speed of the 

waves change as they ascend? (b) Does the speed of the 

ascending waves increase or decrease? Explain.

 7. Why is a solid substance able to transport both longitudi-

nal waves and transverse waves, but a homogeneous fluid is 

able to transport only longitudinal waves?

 8. In mechanics, massless strings are often assumed. Why 

is that not a good assumption when discussing waves on 

strings?

 9. In an earthquake, both S (trans-

verse) and P (longitudinal) 

waves propagate from the focus 

of the earthquake. The focus 

is in the ground radially below 

the epicenter on the surface 

(Fig. CQ16.9). Assume the waves 

move in straight lines through 

uniform material. The S waves 

travel through the Earth more 

slowly than the P waves (at about 

5 km/s versus 8 km/s). By detecting the time of arrival of 

the waves at a seismograph, (a) how can one determine 

the distance to the focus of the earthquake? (b) How 

many detection stations are necessary to locate the focus 

unambiguously?

Epicenter

Seismograph

Path of
seismic
waves

Focus

Figure CQ16.9

Problems

denotes asking for quantitative and conceptual reasoning

denotes symbolic reasoning problem

denotes Master It tutorial available in Enhanced WebAssign

denotes guided problem

denotes “paired problems” that develop reasoning with 
symbols and numerical values

 The problems found in this chapter may be assigned 
online in Enhanced WebAssign
1. denotes straightforward problem; 2. denotes intermediate problem; 
3. denotes challenging problem 
1.  full solution available in the Student Solutions Manual/Study Guide

1.  denotes problems most often assigned in Enhanced WebAssign; 
these provide students with targeted feedback and either a Master It 
tutorial or a Watch It solution video.

shaded
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 | Problems 483

in your diagram (a) just by having a wavelength 1.5 times 

larger. (e) Finally, draw a wave differing from that in dia-

gram (a) just by having a frequency 1.5 times larger.

 7. A sinusoidal wave is traveling along a rope. The oscillator 

that generates the wave completes 40.0 vibrations in 30.0 s. 

A given crest of the wave travels 425 cm along the rope in 

10.0 s. What is the wavelength of the wave?

 8. For a certain transverse wave, the distance between two 

successive crests is 1.20 m, and eight crests pass a given 

point along the direction of travel every 12.0 s. Calculate 

the wave speed.

 9. A wave is described by y 5 0.020 0 sin (kx 2 vt), where k 5 

2.11 rad/m, v 5 3.62 rad/s, x and y are in meters, and t is in 

seconds. Determine (a) the amplitude, (b) the wavelength, 

(c) the frequency, and (d) the speed of the wave.

 10. When a particular wire is vibrating with a frequency of 

4.00 Hz, a transverse wave of wavelength 60.0 cm is pro-

duced. Determine the speed of waves along the wire.

 11. The string shown in Figure P16.11 is driven at a frequency 

of 5.00 Hz. The amplitude of the motion is A 5 12.0 cm, 

and the wave speed is v 5 20.0 m/s. Furthermore, the wave 

is such that y 5 0 at x 5 0 and t 5 0. Determine (a) the 

angular frequency and (b) the wave number for this wave. 

(c) Write an expression for the wave function. Calculate 

(d) the maximum transverse speed and (e) the maximum 

transverse acceleration of an element of the string.

Section 16.1  Propagation of a Disturbance

 1. At t 5 0, a transverse pulse in a wire is described by the 

function

y 5
6.00

x 2 1 3.00

  where x and y are in meters. If the pulse is traveling in the 

positive x direction with a speed of 4.50 m/s, write the 

function y(x, t) that describes this pulse.

 2.  Ocean waves with a crest-to-crest distance of 10.0 m 

can be described by the wave function

y(x, t) 5 0.800 sin [0.628(x 2 vt)]

  where x and y are in meters, t is in seconds, and v 5 

1.20 m/s. (a) Sketch y(x, t) at t 5 0. (b) Sketch y(x, t) at t 5 

2.00 s. (c) Compare the graph in part (b) with that for part 

(a) and explain similarities and differences. (d) How has 

the wave moved between graph (a) and graph (b)?

 3. A seismographic station receives S and P waves from an 

earthquake, separated in time by 17.3 s. Assume the waves 

have traveled over the same path at speeds of 4.50 km/s 

and 7.80 km/s. Find the distance from the seismograph to 

the focus of the quake.

 4. Two points A and B on the 

surface of the Earth are at 

the same longitude and 60.08 

apart in latitude as shown 

in Figure P16.4. Suppose an 

earthquake at point A creates 

a P wave that reaches point B 

by traveling straight through 

the body of the Earth at a 

constant speed of 7.80 km/s. 

The earthquake also radi-

ates a Rayleigh wave that travels at 4.50 km/s. In addition 

to P and S waves, Rayleigh waves are a third type of seismic 

wave that travels along the surface of the Earth rather than 

through the bulk of the Earth. (a) Which of these two seis-

mic waves arrives at B first? (b) What is the time difference 

between the arrivals of these two waves at B?

Section 16.2  Analysis Model: Traveling Wave

 5.  The wave function for a traveling wave on a taut string 

is (in SI units)

y 1x,t 2 5 0.350 sin a10pt 2 3px 1
p

4
b

  (a) What are the speed and direction of travel of the wave? 

(b) What is the vertical position of an element of the string 

at t 5 0, x 5 0.100 m? What are (c) the wavelength and 

(d) the frequency of the wave? (e) What is the maximum 

transverse speed of an element of the string?

 6.  A certain uniform string is held under constant ten-

sion. (a) Draw a side-view snapshot of a sinusoidal wave on 

a string as shown in diagrams in the text. (b) Immediately 

below diagram (a), draw the same wave at a moment later 

by one-quarter of the period of the wave. (c) Then, draw a 

wave with an amplitude 1.5 times larger than the wave in 

diagram (a). (d) Next, draw a wave differing from the one 

A

B
Path of
Rayleigh wave

Path of
P wave

60.0�

Figure P16.4

vS

A

Figure P16.11

12. Consider the sinusoidal wave of Example 16.2 with the 

wave function

y 5 0.150 cos (15.7x 2 50.3t)

  where x and y are in meters and t is in seconds. At a certain 

instant, let point A be at the origin and point B be the clos-

est point to A along the x axis where the wave is 60.0° out of 

phase with A. What is the coordinate of B?

 13. A sinusoidal wave is described by the wave function y 5 

0.25 sin (0.30x 2 40t) where x and y are in meters and t 
is in seconds. Determine for this wave (a) the amplitude, 

(b) the angular frequency, (c) the angular wave number, 

(d) the wavelength, (e) the wave speed, and (f) the direc-

tion of motion.

 14.  (a) Plot y versus t at x 5 0 for a sinusoidal wave of 

the form y 5 0.150 cos (15.7x 2 50.3t), where x and y are 

in meters and t is in seconds. (b) Determine the period of 

vibration. (c) State how your result compares with the value 

found in Example 16.2.

 15. A transverse wave on a string is described by the wave 

function

y 5 0.120 sin ap

8
 x 1 4ptb

  where x and y are in meters and t is in seconds. Determine 

(a) the transverse speed and (b) the transverse acceleration 
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f 5
1

T
    and    v 5 Å

T
m

  She has forgotten what T represents in each equation. 

(a) Use dimensional analysis to determine the units 

required for T in each equation. (b) Explain how you can 

identify the physical quantity each T represents from the 

units.

25. Review. The elastic limit of a steel wire is 2.70 3 108 Pa. 

What is the maximum speed at which transverse wave 

pulses can propagate along this wire without exceeding 

this stress? (The density of steel is 7.86 3 103 kg/m3.)

 26. A transverse traveling wave on a taut wire has an amplitude 

of 0.200 mm and a frequency of 500 Hz. It travels with a 

speed of 196 m/s. (a) Write an equation in SI units of the 

form y 5 A sin (kx 2 vt) for this wave. (b) The mass per 

unit length of this wire is 4.10 g/m. Find the tension in the 

wire.

 27. Transverse pulses travel with a speed of 200 m/s along a 

taut copper wire whose diameter is 1.50 mm. What is the 

tension in the wire? (The density of copper is 8.92 g/cm3.)

 28. Why is the following situation impossible? An astronaut on 

the Moon is studying wave motion using the apparatus 

discussed in Example 16.3 and shown in Figure 16.12. He 

measures the time interval for pulses to travel along the 

horizontal wire. Assume the horizontal wire has a mass of 

4.00 g and a length of 1.60 m and assume a 3.00-kg object 

is suspended from its extension around the pulley. The 

astronaut finds that a pulse requires 26.1 ms to traverse the 

length of the wire.

 29. Tension is maintained in a string 

as in Figure P16.29. The observed 

wave speed is v 5 24.0 m/s when 

the suspended mass is m 5 

3.00 kg. (a) What is the mass per 

unit length of the string? (b) What 

is the wave speed when the sus-

pended mass is m 5 2.00 kg?

 30. Review. A light string with 

a mass per unit length of 

8.00 g/m has its ends tied 

to two walls separated by 

a distance equal to three-

fourths the length of the 

string (Fig. P16.30). An 

object of mass m is sus-

pended from the center of 

the string, putting a ten-

sion in the string. (a) Find 

an expression for the transverse wave speed in the string 

as a function of the mass of the hanging object. (b) What 

should be the mass of the object suspended from the string 

if the wave speed is to be 60.0 m/s?

 31.  A steel wire of length 30.0 m and a copper wire of 

length 20.0 m, both with 1.00-mm diameters, are con-

nected end to end and stretched to a tension of 150 N. 

During what time interval will a transverse wave travel the 

entire length of the two wires?

at t 5 0.200 s for an element of the string located at x 5 

1.60 m. What are (c) the wavelength, (d) the period, and 

(e) the speed of propagation of this wave?

 16. A wave on a string is described by the wave function y 5 

0.100 sin (0.50x 2 20t), where x and y are in meters and t 
is in seconds. (a) Show that an element of the string at x 5 

2.00 m executes harmonic motion. (b) Determine the fre-

quency of oscillation of this particular element.

 17. A sinusoidal wave of wavelength 2.00 m and amplitude 

0.100 m travels on a string with a speed of 1.00 m/s to the 

right. At t 5 0, the left end of the string is at the origin. For 

this wave, find (a) the frequency, (b) the angular frequency, 

(c) the angular wave number, and (d) the wave function in 

SI units. Determine the equation of motion in SI units for 

(e) the left end of the string and (f) the point on the string 

at x 5 1.50 m to the right of the left end. (g) What is the 

maximum speed of any element of the string?

 18. A transverse sinusoidal wave on a string has a period T 5 

25.0 ms and travels in the negative x direction with a speed 

of 30.0 m/s. At t 5 0, an element of the string at x 5 0 has 

a transverse position of 2.00 cm and is traveling downward 

with a speed of 2.00 m/s. (a) What is the amplitude of the 

wave? (b) What is the initial phase angle? (c) What is the 

maximum transverse speed of an element of the string? 

(d) Write the wave function for the wave.

 19. (a) Write the expression for y as a function of x and t in 

SI units for a sinusoidal wave traveling along a rope in the 

negative x direction with the following characteristics: A 5 

8.00 cm, l 5 80.0 cm, f 5 3.00 Hz, and y(0, t) 5 0 at t 5 

0. (b) What If? Write the expression for y as a function of 

x and t for the wave in part (a) assuming y(x, 0) 5 0 at the 

point x 5 10.0 cm.

 20.  A sinusoidal wave traveling in the negative x direction 

(to the left) has an amplitude of 20.0 cm, a wavelength of 

35.0 cm, and a frequency of 12.0 Hz. The transverse posi-

tion of an element of the medium at t 5 0, x 5 0 is y 5 

23.00 cm, and the element has a positive velocity here. We 

wish to find an expression for the wave function describing 

this wave. (a) Sketch the wave at t 5 0. (b) Find the angular 

wave number k from the wavelength. (c) Find the period T 

from the frequency. Find (d) the angular frequency v and 

(e) the wave speed v. (f) From the information about t 5 0, 

find the phase constant f. (g) Write an expression for the 

wave function y(x, t).

Section 16.3  The Speed of Waves on Strings

 21. An Ethernet cable is 4.00 m long. The cable has a mass of 

0.200 kg. A transverse pulse is produced by plucking one 

end of the taut cable. The pulse makes four trips down and 

back along the cable in 0.800 s. What is the tension in the 

cable?

 22. A piano string having a mass per unit length equal to 

5.00 3 1023 kg/m is under a tension of 1 350 N. Find the 

speed with which a wave travels on this string.

 23.  Transverse waves travel with a speed of 20.0 m/s on a 

string under a tension of 6.00 N. What tension is required 

for a wave speed of 30.0 m/s on the same string?

 24.  A student taking a quiz finds on a reference sheet 

the two equations

m

Figure P16.29 
Problems 29 and 47.

3L

m

4

L
2

L
2

Figure P16.30
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age rate at which energy is transmitted along the string? 

(b) What is the energy contained in each cycle of the 

wave?

 40.  A horizontal string can transmit a maximum power 

P0 (without breaking) if a wave with amplitude A and 

angular frequency v is traveling along it. To increase this 

maximum power, a student folds the string and uses this 

“double string” as a medium. Assuming the tension in the 

two strands together is the same as the original tension in 

the single string and the angular frequency of the wave 

remains the same, determine the maximum power that 

can be transmitted along the “double string.”

Section 16.6  The Linear Wave Equation

 41.  Show that the wave function y 5 e b(x2vt) is a solution of 

the linear wave equation (Eq. 16.27), where b is a constant.

 42.  (a) Evaluate A in the scalar equality 4 (7 1 3) 5 

A. (b) Evaluate A, B, and C in the vector equality 

700 i^ 1 3.00 k^ 5 A i^ 1 B  j^ 1 C  k^ . (c) Explain how you 

arrive at the answers to convince a student who thinks 

that you cannot solve a single equation for three differ-

ent unknowns. (d) What If? The functional equality or 

identity

A 1 B cos (Cx 1 Dt 1 E) 5 7.00 cos (3x 1 4t 1 2)

  is true for all values of the variables x and t, measured in 

meters and in seconds, respectively. Evaluate the constants 

A, B, C, D, and E. (e) Explain how you arrive at your answers 

to part (d).

 43.  Show that the wave function y 5 ln [b(x 2 vt)] is a solu-

tion to Equation 16.27, where b is a constant.

 44.  (a) Show that the function y(x, t) 5 x2 1 v2t2 is a solu-

tion to the wave equation. (b) Show that the function in 

part (a) can be written as f(x 1 vt) 1 g(x 2 vt) and deter-

mine the functional forms for f and g. (c) What If? Repeat 

parts (a) and (b) for the function y(x, t) 5 sin (x) cos (vt).

Additional Problems

 45. Motion-picture film is projected at a frequency of 24.0 

frames per second. Each photograph on the film is the 

same height of 19.0 mm, just like each oscillation in a wave 

is the same length. Model the height of a frame as the wave-

length of a wave. At what constant speed does the film pass 

into the projector?

 46. “The wave” is a particular type of pulse that can propa-

gate through a large crowd gathered at a sports arena (Fig. 

P16.46). The elements of the medium are the spectators, 

Section 16.5  Rate of Energy Transfer by Sinusoidal Waves on 
Strings

 32. A taut rope has a mass of 0.180 kg and a length of 3.60 m. 

What power must be supplied to the rope so as to gener-

ate sinusoidal waves having an amplitude of 0.100 m and 

a wavelength of 0.500 m and traveling with a speed of 

30.0 m/s?

 33. Transverse waves are being generated on a rope under 

constant tension. By what factor is the required power 

increased or decreased if (a) the length of the rope is dou-

bled and the angular frequency remains constant, (b) the 

amplitude is doubled and the angular frequency is halved, 

(c) both the wavelength and the amplitude are doubled, 

and (d) both the length of the rope and the wavelength are 

halved?

 34.  Sinusoidal waves 5.00 cm in amplitude are to be trans-

mitted along a string that has a linear mass density of 

4.00 3 1022 kg/m. The source can deliver a maximum power 

of 300 W, and the string is under a tension of 100 N. What is 

the highest frequency f at which the source can operate?

 35.  A sinusoidal wave on a string is described by the wave 

function

y 5 0.15 sin (0.80x 2 50t)

  where x and y are in meters and t is in seconds. The mass 

per unit length of this string is 12.0 g/m. Determine (a) the 

speed of the wave, (b) the wavelength, (c) the frequency, 

and (d) the power transmitted by the wave.

 36.  In a region far from the epicenter of an earthquake, 

a seismic wave can be modeled as transporting energy in 

a single direction without absorption, just as a string wave 

does. Suppose the seismic wave moves from granite into 

mudfill with similar density but with a much smaller bulk 

modulus. Assume the speed of the wave gradually drops 

by a factor of 25.0, with negligible reflection of the wave. 

(a) Explain whether the amplitude of the ground shaking 

will increase or decrease. (b) Does it change by a predict-

able factor? (This phenomenon led to the collapse of part 

of the Nimitz Freeway in Oakland, California, during the 

Loma Prieta earthquake of 1989.)

 37. A long string carries a wave; a 6.00-m segment of the string 

contains four complete wavelengths and has a mass of 

180 g. The string vibrates sinusoidally with a frequency of 

50.0 Hz and a peak-to-valley displacement of 15.0 cm. (The 

“peak-to- valley” distance is the vertical distance from the 

farthest positive position to the farthest negative position.) 

(a) Write the function that describes this wave traveling in 

the positive x direction. (b) Determine the power being 

supplied to the string.

 38.  A two-dimensional water wave spreads in circular rip-

ples. Show that the amplitude A at a distance r from the ini-

tial disturbance is proportional to 1/!r. Suggestion: Con-

sider the energy carried by one outward-moving ripple.

 39. The wave function for a wave on a taut string is

y 1x, t 2 5 0.350 sin a10pt 2 3px 1
p

4
b

  where x and y are in meters and t is in seconds. If the linear 

mass density of the string is 75.0 g/m, (a) what is the aver- Figure P16.46
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approximately by v 5 !gd. Assume an earthquake occurs 

all along a tectonic plate boundary running north to south 

and produces a straight tsunami wave crest moving every-

where to the west. (a) What physical quantity can you con-

sider to be constant in the motion of any one wave crest? 

(b) Explain why the amplitude of the wave increases as 

the wave approaches shore. (c) If the wave has amplitude 

1.80 m when its speed is 200 m/s, what will be its amplitude 

where the water is 9.00 m deep? (d) Explain why the ampli-

tude at the shore should be expected to be still greater, but 

cannot be meaningfully predicted by your model.

 53. Review. A block of mass M, supported by a string, rests 

on a frictionless incline making an angle u with the hori-

zontal (Fig. P16.53). The length of the string is L, and its 

mass is m ,, M. Derive an expression for the time interval 

required for a transverse wave to travel from one end of the 

string to the other.

with zero position corresponding to their being seated and 

maximum position corresponding to their standing and 

raising their arms. When a large fraction of the spectators 

participates in the wave motion, a somewhat stable pulse 

shape can develop. The wave speed depends on people’s 

reaction time, which is typically on the order of 0.1 s. Esti-

mate the order of magnitude, in minutes, of the time inter-

val required for such a pulse to make one circuit around a 

large sports stadium. State the quantities you measure or 

estimate and their values.

 47. A sinusoidal wave in a rope is described by the wave 

function

y 5 0.20 sin (0.75px 1 18pt)

  where x and y are in meters and t is in seconds. The rope 

has a linear mass density of 0.250 kg/m. The tension in 

the rope is provided by an arrangement like the one illus-

trated in Figure P16.29. What is the mass of the suspended 

object?

 48.  A sinusoidal wave in a string is described by the wave 

function

y 5 0.150 sin (0.800x 2 50.0t)

  where x and y are in meters and t is in seconds. The mass 

per length of the string is 12.0 g/m. (a) Find the maxi-

mum transverse acceleration of an element of this string. 

(b) Determine the maximum transverse force on a 1.00-

cm segment of the string. (c) State how the force found in 

part (b) compares with the tension in the string.

 49. Review. A 2.00-kg block hangs from a rubber cord, 

being supported so that the cord is not stretched. The 

unstretched length of the cord is 0.500 m, and its mass is 

5.00 g. The “spring constant” for the cord is 100 N/m. The 

block is released and stops momentarily at the lowest point. 

(a) Determine the tension in the cord when the block is at 

this lowest point. (b) What is the length of the cord in this 

“stretched” position? (c) If the block is held in this lowest 

position, find the speed of a transverse wave in the cord.

 50. Review. A block of mass M hangs from a rubber cord. 

The block is supported so that the cord is not stretched. 

The unstretched length of the cord is L0, and its mass is 

m, much less than M. The “spring constant” for the cord is 

k. The block is released and stops momentarily at the low-

est point. (a) Determine the tension in the string when the 

block is at this lowest point. (b) What is the length of the 

cord in this “stretched” position? (c) If the block is held in 

this lowest position, find the speed of a transverse wave in 

the cord.

 51. A transverse wave on a string is described by the wave 

function

y(x, t) 5 0.350 sin (1.25x 1 99.6t)

  where x and y are in meters and t is in seconds. Consider 

the element of the string at x 5 0. (a) What is the time 

interval between the first two instants when this element 

has a position of y 5 0.175 m? (b) What distance does the 

wave travel during the time interval found in part (a)?

 52.  An undersea earthquake or a landslide can produce 

an ocean wave of short duration carrying great energy, 

called a tsunami. When its wavelength is large compared 

to the ocean depth d, the speed of a water wave is given 

m L

u

M

Figure P16.53

54.  A string with linear density 0.500 g/m is held under 

tension 20.0 N. As a transverse sinusoidal wave propagates 

on the string, elements of the string move with maximum 

speed vy,max. (a) Determine the power transmitted by the 

wave as a function of vy,max. (b) State in words the propor-

tionality between power and vy,max. (c) Find the energy con-

tained in a section of string 3.00 m long as a function of 

vy,max. (d) Express the answer to part (c) in terms of the 

mass m of this section. (e) Find the energy that the wave 

carries past a point in 6.00 s.

 55. Review. A block of mass M 5 0.450 kg is attached to one 

end of a cord of mass 0.003 20 kg; the other end of the cord 

is attached to a fixed point. The block rotates with constant 

angular speed in a circle on a frictionless, horizontal table 

as shown in Figure P16.55. Through what angle does the 

block rotate in the time interval during which a transverse 

wave travels along the string from the center of the circle 

to the block?

M

Figure P16.55 Problems 55, 56, and 57.
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used in 1856 to estimate the average depth of the Pacific 

Ocean long before soundings were made to give a direct 

determination.)

Challenge Problems

 63.  A rope of total mass m and length L is suspended verti-

cally. As shown in Problem 58, a pulse travels from the bot-

tom to the top of the rope in an approximate time interval 

Dt 5 2!L/g  with a speed that varies with position x mea-

sured from the bottom of the rope as v 5 !gx . Assume 

the linear wave equation in Section 16.6 describes waves at 

all locations on the rope. (a) Over what time interval does 

a pulse travel halfway up the rope? Give your answer as a 

fraction of the quantity 2!L/g. (b) A pulse starts traveling 

up the rope. How far has it traveled after a time interval 

!L/g ?

 64.  Assume an object of mass M is suspended from the bot-

tom of the rope of mass m and length L in Problem 58. 

(a) Show that the time interval for a transverse pulse to 

travel the length of the rope is

Dt 5 2Å
L

mg
1 "M 1 m 2 "M 2

  (b) What If? Show that the expression in part (a) reduces 

to the result of Problem 58 when M 5 0. (c) Show that for 

m ,, M, the expression in part (a) reduces to

Dt 5 Å
mL
Mg

65.  If a loop of chain is spun at high speed, it can roll along 

the ground like a circular hoop without collapsing. Con-

sider a chain of uniform linear mass density m whose cen-

ter of mass travels to the right at a high speed v0 as shown 

in Figure P16.65. (a) Determine the tension in the chain in 

terms of m and v0. Assume the weight of an individual link 

is negligible compared to the tension. (b) If the loop rolls 

over a small bump, the resulting deformation of the chain 

causes two transverse pulses to propagate along the chain, 

one moving clockwise and one moving counterclockwise. 

What is the speed of the pulses traveling along the chain? 

(c) Through what angle does each pulse travel during the 

time interval over which the loop makes one revolution?

56. Review. A block of mass M 5 0.450 kg is attached to one 

end of a cord of mass m 5 0.003 20 kg; the other end of 

the cord is attached to a fixed point. The block rotates with 

constant angular speed v 5 10.0 rad/s in a circle on a fric-

tionless, horizontal table as shown in Figure P16.55. What 

time interval is required for a transverse wave to travel 

along the string from the center of the circle to the block?

 57.  Review. A block of mass M is attached to one end of a 

cord of mass m; the other end of the cord is attached to a 

fixed point. The block rotates with constant angular speed 

v in a circle on a frictionless, horizontal table as shown in 

Figure P16.55. What time interval is required for a trans-

verse wave to travel along the string from the center of the 

circle to the block?

 58.  A rope of total mass m and length L is suspended verti-

cally. Analysis shows that for short transverse pulses, the 

waves above a short distance from the free end of the rope 

can be represented to a good approximation by the linear 

wave equation discussed in Section 16.6. Show that a trans-

verse pulse travels the length of the rope in a time inter-

val that is given approximately by Dt < 2!L/g. Suggestion: 
First find an expression for the wave speed at any point a 

distance x from the lower end by considering the rope’s 

tension as resulting from the weight of the segment below 

that point.

 59. A wire of density r is tapered so that its cross-sectional area 

varies with x according to

A 5 1.00 3 1025 x 1 1.00 3 1026

  where A is in meters squared and x is in meters. The ten-

sion in the wire is T. (a) Derive a relationship for the speed 

of a wave as a function of position. (b) What If? Assume 

the wire is aluminum and is under a tension T 5 24.0 N. 

Determine the wave speed at the origin and at x 5 10.0 m.

 60. Review. An aluminum wire is held between two clamps 

under zero tension at room temperature. Reducing the 

temperature, which results in a decrease in the wire’s equi-

librium length, increases the tension in the wire. Taking 

the cross-sectional area of the wire to be 5.00 3 1026 m2, 

the density to be 2.70 3 103 kg/m3, and Young’s modulus to 

be 7.00 3 1010 N/m2, what strain (DL/L) results in a trans-

verse wave speed of 100 m/s?

 61.  A pulse traveling along a string of linear mass density m 

is described by the wave function

y 5 [A0e2bx] sin (kx 2 vt)

  where the factor in brackets is said to be the amplitude. 

(a) What is the power P(x) carried by this wave at a point 

x? (b) What is the power P(0) carried by this wave at the 

origin? (c) Compute the ratio P(x)/P(0).

 62. Why is the following situation impossible? Tsunamis are ocean 

surface waves that have enormous wavelengths (100 to 

200 km), and the propagation speed for these waves is 

v < !gd avg, where davg is the average depth of the water. 

An earthquake on the ocean floor in the Gulf of Alaska 

produces a tsunami that reaches Hilo, Hawaii, 4 450 km 

away, in a time interval of 5.88 h. (This method was 
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Figure P16.65

66.  A string on a musical instrument is held under tension 

T and extends from the point x 5 0 to the point x 5 L. The 

string is overwound with wire in such a way that its mass 

per unit length m(x) increases uniformly from m0 at x 5 0 

to mL at x 5 L. (a) Find an expression for m(x) as a function 

of x over the range 0 # x # L. (b) Find an expression for 

the time interval required for a transverse pulse to travel 

the length of the string.
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