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Recently, 1,000 college seniors were
asked whether they favored increasing
their state’s gasoline tax to generate funds
to improve highways and whether they
favored increasing their state’s alcohol 
tax to generate funds to improve the
public education system. The responses
were tallied, and the following results
were printed in the campus newspaper:
746 students favored an increase in the
gasoline tax, 602 favored an increase
in the alcohol tax, and 449 favored
increase in both taxes. How many of
these 1,000 students favored an increase
in at least one of the taxes? How many
favored increasing only the gasoline tax?
How many favored increasing only the
alcohol tax? How many favored
increasing neither tax?

The mathematical tool that was
designed to answer questions like these is

WHAT WE WILL DO In This Chapter

WE’LL USE VENN DIAGRAMS TO DEPICT THE
RELATIONSHIPS BETWEEN SETS: 

• One set might be contained within another set.

• Two or more sets might, or might not, share
elements in common. 

WE’LL EXPLORE APPLICATIONS OF VENN
DIAGRAMS:

• The results of consumer surveys, marketing
analyses, and political polls can be analyzed by
using Venn diagrams.

• Venn diagrams can be used to prove general
formulas related to set theory.

WE’LL EXPLORE VARIOUS METHODS OF
COUNTING:

• A fundamental principle of counting is used to
determine the total number of possible ways of
selecting specified items. For example, how many
different student ID numbers are possible at your
school?

continued
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WHAT WE WILL DO In This Chapter — cont inued

• In selecting items from a specified group, sometimes the order in which the
items are selected matters (the awarding of prizes: first, second, and third),
and sometimes it does not (selecting numbers in a lottery or people for a
committee). How does this affect your method of counting?

WE’LL USE SETS IN VARIOUS CONTEXTS:

• In this text, we will use set theory extensively in Chapter 3 on probability.

• Many standardized admissions tests, such as the Graduate Record Exam
(GRE) and the Law School Admissions Test (LSAT), ask questions that can
be answered with set theory.

WE’LL EXPLORE SETS THAT HAVE AN INFINITE NUMBER OF ELEMENTS:

• One-to-one correspondences are used to “count” and compare the number
of elements in infinite sets.

• Not all infinite sets have the same number of elements; some infinite sets
are countable, and some are not.

the set. Webster’s New World College Dictionary defines a set as “a
prescribed collection of points, numbers, or other objects that satisfy a
given condition.” Although you might be able to answer the questions
about taxes without any formal knowledge of sets, the mental reasoning
involved in obtaining your answers uses some of the basic principles of
sets. (Incidentally, the answers to the above questions are 899, 297, 153,
and 101, respectively.)

The branch of mathematics that deals with sets is called set theory.
Set theory can be helpful in solving both mathematical and nonmathematical
problems. We will explore set theory in the first half of this chapter. As
the above example shows, set theory often involves the analysis of the
relationships between sets and counting the number of elements in a
specific category. Consequently, various methods of counting, collectively
known as combinatorics, will be developed and discussed in the second
half of this chapter. Finally, what if a set has too many elements to count by
using finite numbers? For example, how many integers are there? How
many real numbers? The chapter concludes with an exploration of infinite
sets and various “levels of infinity.”
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2.1 Sets and Set Operations

Objectives

• Learn the basic vocabulary and notation of set theory

• Learn and apply the union, intersection, and complement operations

• Draw Venn diagrams

A set is a collection of objects or things. The objects or things in the set are called
elements (or members) of the set. In our example above, we could talk about the
set of students who favor increasing only the gasoline tax or the set of students who
do not favor increasing either tax. In geography, we can talk about the set of all
state capitals or the set of all states west of the Mississippi. It is easy to determine
whether something is in these sets; for example, Des Moines is an element of the
set of state capitals, whereas Dallas is not. Such sets are called well-defined
because there is a way of determining for sure whether a particular item is an ele-
ment of the set.

EXAMPLE 1 DETERMINING WELL-DEFINED SETS Which of the following sets are
well-defined?

a. the set of all movies directed by Alfred Hitchcock
b. the set of all great rock-and-roll bands
c. the set of all possible two-person committees selected from a group of five people

SOLUTION a. This set is well-defined; either a movie was directed by Hitchcock, or it was not.
b. This set is not well-defined; membership is a matter of opinion. Some people would say

that the Ramones (one of the pioneer punk bands of the late 1970s) are a member, while
others might say they are not. (Note: The Ramones were inducted into the Rock and
Roll Hall of Fame in 2002.)

c. This set is well-defined; either the two people are from the group of five, or they
are not.

Notation

By tradition, a set is denoted by a capital letter, frequently one that will serve as
a reminder of the contents of the set. Roster notation (also called listing nota-
tion) is a method of describing a set by listing each element of the set inside the
symbols { and }, which are called set braces. In a listing of the elements of a set,
each distinct element is listed only once, and the order of the elements doesn’t
matter.

The symbol � stands for the phrase is an element of, and � stands for is
not an element of. The cardinal number of a set A is the number of elements in
the set and is denoted by n(A). Thus, if R is the set of all letters in the name
“Ramones,” then R � {r, a, m, o, n, e, s}. Notice that m is an element of the set
R, x is not an element of R, and R has 7 elements. In symbols, m � R, x � R,
and n(R) � 7.
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Two sets are equal if they contain exactly the same elements. The order in
which the elements are listed does not matter. If M is the set of all letters in the
name “Moaners,” then M � {m, o, a, n, e, r, s}. This set contains exactly the
same elements as the set R of letters in the name “Ramones.” Therefore, M � R �
{a, e, m, n, o, r, s}.

Often, it is not appropriate or not possible to describe a set in roster notation.
For extremely large sets, such as the set V of all registered voters in Detroit, or for
sets that contain an infinite number of elements, such as the set G of all negative
real numbers, the roster method would be either too cumbersome or impossible
to use. Although V could be expressed via the roster method (since each county
compiles a list of all registered voters in its jurisdiction), it would take hundreds
or even thousands of pages to list everyone who is registered to vote in Detroit!
In the case of the set G of all negative real numbers, no list, no matter how long,
is capable of listing all members of the set; there is an infinite number of nega-
tive numbers.

In such cases, it is often necessary, or at least more convenient, to use
set-builder notation, which lists the rules that determine whether an object is
an element of the set rather than the actual elements. A set-builder description of
set G above is

G � {x � x � 0 and x � t}

which is read as “the set of all x such that x is less than zero and x is a real num-
ber.” A set-builder description of set V above is

V � {persons � the person is a registered voter in Detroit}

which is read as “the set of all persons such that the person is a registered voter in
Detroit.” In set-builder notation, the vertical line stands for the phrase “such that.”

The “Ramones” or The “Moaners”? The set R of all letters in the name “Ramones” is the same
as the set M of all letters in the name “Moaners.” Consequently, the sets are equal; M � R �
{a, e, m, n, o, r, s}. (R.I.P. Joey Ramone 1951–2001, Dee Dee Ramone 1952–2002, Johnny
Ramone 1948–2004.)
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Whatever is on the left side of the line is the general type of thing in the set, while
the rules about set membership are listed on the right.

EXAMPLE 2 READING SET-BUILDER NOTATION Describe each of the following in
words.

a. {x � x � 0 and x � t}
b. {persons � the person is a living former U.S. president}
c. {women � the woman is a former U.S. president}

SOLUTION a. the set of all x such that x is a positive real number
b. the set of all people such that the person is a living former U.S. president
c. the set of all women such that the woman is a former U.S. president

The set listed in part (c) of Example 2 has no elements; there are no women
who are former U.S. presidents. If we let W equal “the set of all women such that
the woman is a former U.S. president,” then n(W ) � 0. A set that has no elements
is called an empty set and is denoted by � or by {}. Notice that since the empty
set has no elements, n(�) � 0. In contrast, the set {0} is not empty; it has one ele-
ment, the number zero, so n({0}) � 1.

Universal Set and Subsets

When we work with sets, we must define a universal set. For any given problem, the
universal set, denoted by U, is the set of all possible elements of any set used in the
problem. For example, when we spell words, U is the set of all letters in the alpha-
bet. When every element of one set is also a member of another set, we say that the
first set is a subset of the second; for instance, {p, i, n} is a subset of {p, i, n, e}.
In general, we say that A is a subset of B, denoted by A 8 B, if for every x � A it
follows that x � B. Alternatively, A 8 B if A contains no elements that are not in B.
If A contains an element that is not in B, then A is not a subset of B (symbolized as
A h B).

EXAMPLE 3 DETERMINING SUBSETS Let B � {countries � the country has a permanent
seat on the U.N. Security Council}. Determine whether A is a subset of B.

a. A � {Russian Federation, United States}
b. A � {China, Japan}
c. A � {United States, France, China, United Kingdom, Russian Federation}
d. A � { }

SOLUTION We use the roster method to list the elements of set B.

B � {China, France, Russian Federation, United Kingdom, United States}

a. Since every element of A is also an element of B, A is a subset of B; A 8 B.
b. Since A contains an element (Japan) that is not in B, A is not a subset of B; A h B.
c. Since every element of A is also an element of B (note that A � B), A is a subset of B

(and B is a subset of A); A 8 B (and B 8 A). In general, every set is a subset of itself;
A 8 A for any set A.

d. Does A contain an element that is not in B? No! Therefore, A (an empty set) is a subset of
B; A 8 B. In general, the empty set is a subset of all sets; � 8 A for any set A.

2.1 Sets and Set Operations 71
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We can express the relationship A 8 B visually by drawing a Venn diagram,
as shown in Figure 2.1. A Venn diagram consists of a rectangle, representing the
universal set, and various closed figures within the rectangle, each representing a
set. Recall that Venn diagrams were used in Section 1.1 to determine whether an
argument was valid.

If two sets are equal, they contain exactly the same elements. It then follows
that each is a subset of the other. For example, if A � B, then every element of A is
an element of B (and vice versa). In this case, A is called an improper subset of B.
(Likewise, B is an improper subset of A.) Every set is an improper subset of itself;
for example, A 8 A. On the other hand, if A is a subset of B and B contains an ele-
ment not in A (that is, A � B), then A is called a proper subset of B. To indicate a
proper subset, the symbol ( is used. While it is acceptable to write {1, 2} 8 {1, 2, 3},
the relationship of a proper subset is stressed when it is written {1, 2} ( {1, 2, 3}.
Notice the similarities between the subset symbols, ( and 8, and the inequality
symbols, � and �, used in algebra; it is acceptable to write 1 � 3, but writing 1 � 3
is more informative.

Intersection of Sets

Sometimes an element of one set is also an element of another set; that is, the sets
may overlap. This overlap is called the intersection of the sets. If an element is in
two sets at the same time, it is in the intersection of the sets.

72 CHAPTER 2 Sets and Counting

For example, given the sets A � {Buffy, Spike, Willow, Xander} and B �
{Angel, Anya, Buffy, Giles, Spike}, their intersection is A ¨ B � {Buffy,
Spike}.

Venn diagrams are useful in depicting the relationship between sets. The
Venn diagram in Figure 2.2 illustrates the intersection of two sets; the shaded
region represents A ¨ B.

Mutually Exclusive Sets

Sometimes a pair of sets has no overlap. Consider an ordinary deck of playing
cards. Let D � {cards � the card is a diamond} and S � {cards � the card is a
spade}. Certainly, no cards are both diamonds and spades at the same time; that
is, S ¨ D � �.

Two sets A and B are mutually exclusive (or disjoint) if they have no ele-
ments in common, that is, if A ¨ B � �. The Venn diagram in Figure 2.3 illustrates
mutually exclusive sets.

U

A

B

A is a subset of B. A 8 B.

FIGURE 2.1

The intersection A ¨ B is
represented by the
(overlapping) shaded region.

FIGURE 2.2

U

A B

U

A

B

Mutually exclusive sets have
no elements in common
(A ¨ B � �).

FIGURE 2.3

INTERSECTION OF SETS
The intersection of set A and set B, denoted by A ¨ B, is

A ¨ B � {x � x � A and x � B}

The intersection of two sets consists of those elements that are common to
both sets.
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Union of Sets

What does it mean when we ask, “How many of the 500 college students in a trans-
portation survey own an automobile or a motorcycle?” Does it mean “How many
students own either an automobile or a motorcycle or both?” or does it mean “How
many students own either an automobile or a motorcycle, but not both?” The for-
mer is called the inclusive or, because it includes the possibility of owning both;
the latter is called the exclusive or. In logic and in mathematics, the word or refers
to the inclusive or, unless you are told otherwise.

The meaning of the word or is important to the concept of union. The union
of two sets is a new set formed by joining those two sets together, just as the union
of the states is the joining together of fifty states to form one nation.

For example, given the sets A � {Conan, David} and B � {Ellen, Katie,
Oprah}, their union is A ´ B � {Conan, David, Ellen, Katie, Oprah}, and their in-
tersection is A ¨ B � �. Note that because they have no elements in common,
A and B are mutually exclusive sets. The Venn diagram in Figure 2.4 illustrates
the union of two sets; the entire shaded region represents A ´ B.

EXAMPLE 4 FINDING THE INTERSECTION AND UNION OF SETS Given the sets
A � {1, 2, 3} and B � {2, 4, 6}, find the following.

a. A ¨ B (the intersection of A and B)
b. A ´ B (the union of A and B)

SOLUTION a. The intersection of two sets consists of those elements that are common to both sets;
therefore, we have

A ¨ B � {1, 2, 3} ¨ {2, 4, 6}

� {2}

b. The union of two sets consists of all elements that are in at least one of the sets; there-
fore, we have

A ´ B � {1, 2, 3} ´ {2, 4, 6}

� {1, 2, 3, 4, 6}

The Venn diagram in Figure 2.5 shows the composition of each set and illustrates the
intersection and union of the two sets.

Because A ´ B consists of all elements that are in A or B (or both), to find
n(A ´ B), we add n(A) plus n(B). However, doing so results in an answer that
might be too big; that is, if A and B have elements in common, these elements will
be counted twice (once as a part of A and once as a part of B). Therefore, to find
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U

2

6

1 4

3

A B

The composition of sets A and
B in Example 4.

FIGURE 2.5

U

A B

The union A ´ B is
represented by the (entire)
shaded region. 

FIGURE 2.4

UNION OF SETS
The union of set A and set B, denoted by A ´ B, is

A ´ B � {x � x � A or x � B}

The union of A and B consists of all elements that are in either A or B or
both, that is, all elements that are in at least one of the sets.
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the cardinal number of A ´ B, we add the cardinal number of A to the cardinal
number of B and then subtract the cardinal number of A ¨ B (so that the overlap
is not counted twice).

As long as any three of the four quantities in the general formula are known,
the missing quantity can be found by algebraic manipulation.

EXAMPLE 5 ANALYZING THE COMPOSITION OFA UNIVERSAL SET Given n(U) �
169, n(A) � 81, and n(B) � 66, find the following.

a. If n(A ¨ B ) � 47, find n(A ´ B ) and draw a Venn diagram depicting the composition of
the universal set.

b. If n(A ´ B ) � 147, find n(A ¨ B ) and draw a Venn diagram depicting the composition
of the universal set.

SOLUTION a. We must use the Union/Intersection Formula. Substituting the three given quantities, we
have

n(A ´ B) � n(A) � n(B) � n(A ¨ B)

� 81 � 66 � 47

� 100

The Venn diagram in Figure 2.6 illustrates the composition of U.

U

47

1934

69

A B

U

A

81

22
66
B

n(A ¨ B) � 47.FIGURE 2.6 n(A ´ B) � 147.FIGURE 2.7

b. We must use the Union/Intersection Formula. Substituting the three given quantities, we
have

n(A ´ B) � n(A) � n(B) � n(A ¨ B)

147 � 81 � 66 � n(A ¨ B)

147 � 147 � n(A ¨ B)

n(A ¨ B) � 147 � 147

n(A ¨ B) � 0

Therefore, A and B have no elements in common; they are mutually exclusive. The
Venn diagram in Figure 2.7 illustrates the composition of U.

CARDINAL NUMBER FORMULA FOR THE
UNION/INTERSECTION OF SETS
For any two sets A and B, the number of elements in their union is n(A ´ B),
where

n(A ´ B) � n(A) � n(B) � n(A ¨ B)

and n(A ¨ B) is the number of elements in their intersection.
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EXAMPLE 6 ANALYZING THE RESULTS OF A SURVEY A recent transportation survey
of 500 college students (the universal set U) yielded the following information:
291 students own an automobile (A), 179 own a motorcycle (M), and 85 own both
an automobile and a motorcycle (A ¨ M). What percent of these students own an
automobile or a motorcycle?

SOLUTION Recall that “automobile or motorcycle” means “automobile or motorcycle or both”
(the inclusive or) and that or implies union. Hence, we must find n(A ´ M), the
cardinal number of the union of sets A and M. We are given that n(A) � 291,
n(M) � 179, and n(A ¨ M) � 85. Substituting the given values into the Union/
Intersection Formula, we have

n(A ´ M ) � n(A) � n(M ) � n(A ¨ M )

� 291 � 179 � 85

� 385

Therefore, 385 of the 500 students surveyed own an automobile or a motorcycle.
Expressed as a percent, 385�500 � 0.77; therefore, 77% of the students own an
automobile or a motorcycle (or both).

Complement of a Set

In certain situations, it might be important to know how many things are not in a
given set. For instance, when playing cards, you might want to know how many
cards are not ranked lower than a five; or when taking a survey, you might want to
know how many people did not vote for a specific proposition. The set of all
elements in the universal set that are not in a specific set is called the complement
of the set.

For example, given that U � {1, 2, 3, 4, 5, 6, 7, 8, 9} and A � {1, 3, 5, 7, 9}, the
complement of A is A	 � {2, 4, 6, 8}. What is the complement of A	? Just as
�(�x) � x in algebra, (A	)	 � A in set theory. The Venn diagram in Figure 2.8
illustrates the complement of set A; the shaded region represents A	.

Suppose A is a set of elements, drawn from a universal set U. If x is an
element of the universal set (x � U), then exactly one of the following must be
true: (1) x is an element of A (x � A), or (2) x is not an element of A (x � A).
Since no element of the universal set can be in both A and A	 at the same time,
it follows that A and A	 are mutually exclusive sets whose union equals the en-
tire universal set. Therefore, the sum of the cardinal numbers of A and A	 equals
the cardinal number of U.

2.1 Sets and Set Operations 75

The complement A	 is repre-
sented by the shaded region.

FIGURE 2.8

U

A

COMPLEMENT OF A SET
The complement of set A, denoted by A	 (read “A prime” or “the complement
of A”), is

A	 � {x � x � U and x � A}

The complement of a set consists of all elements that are in the universal set
but not in the given set.
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John Venn is considered by
many to be one of the

originators of modern symbolic
logic. Venn received his
degree in mathematics from
the University at Cambridge at
the age of twenty-three. He
was then elected a fellow of
the college and held this fellowship
until his death, some 66 years later.
Two years after receiving his degree,
Venn accepted a teaching position at
Cambridge: college lecturer in moral
sciences.

During the latter half of the nineteenth
century, the study of logic experienced a
rebirth in England. Mathematicians
were attempting to symbolize and quan-
tify the central concepts of logical
thought. Consequently, Venn chose to
focus on the study of logic during his
tenure at Cambridge. In addition, he in-
vestigated the field of probability and
published The Logic of Chance, his first
major work, in 1866.

Venn was well read in the works
of his predecessors, including the
noted logicians Augustus De Morgan,

George Boole, and
Charles Dodgson
(a.k.a. Lewis Car-
roll). Boole’s pioneer-
ing work on the
marriage of logic
and algebra proved
to be a strong influ-
ence on Venn; in
fact, Venn used the

type of diagram that now
bears his name in an 1876 paper in
which he examined Boole’s system of
symbolic logic.

Venn was not the first scholar to use
the diagrams that now bear his name.
Gottfried Leibniz, Leonhard Euler, and
others utilized similar diagrams years
before Venn did. Examining each au-
thor’s diagrams, Venn was critical of
their lack of uniformity. He developed a
consistent, systematic explanation of the
general use of geometrical figures in the
analysis of logical arguments. Today,
these geometrical figures are known by
his name and are used extensively in
elementary set theory and logic.

Venn’s writings were held in high
esteem. His textbooks, Symbolic Logic
(1881) and The Principles of Empirical
Logic (1889), were used during the late

nineteenth and early twentieth centuries.
In addition to his works on logic and
probability, Venn conducted much
research into historical records, espe-
cially those of his college and those of
his family.
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Historical
Note

JOHN VENN, 1834–1923

Set theory and the cardinal numbers of sets
are used extensively in the study of probability.
Although he was a professor of logic, Venn
investigated the foundations and applications
of theoretical probability. Venn’s first major
work, The Logic of Chance, exhibited the
diversity of his academic interests.
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It is often quicker to count the elements that are not in a set than to count
those that are. Consequently, to find the cardinal number of a set, we can subtract
the cardinal number of its complement from the cardinal number of the universal
set; that is, n(A) � n(U) � n(A	).

CARDINAL NUMBER FORMULA FOR THE
COMPLEMENT OF A SET
For any set A and its complement A	,

n(A) � n(A	) � n(U)

where U is the universal set.
Alternatively,

n(A) � n(U) � n(A	) and n(A	) � n(U ) � n(A)
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A B	

BA

U

U

A B

B	A

U

A B

B	A

FIGURE 2.11 FIGURE 2.12

FIGURE 2.10

EXAMPLE 7 USING THE COMPLEMENT FORMULA How many letters in the alphabet
precede the letter w?

SOLUTION Rather than counting all the letters that precede w, we will take a shortcut by counting
all the letters that do not precede w. Let L � {letters � the letter precedes w}. 
Therefore, L	 � {letter � the letter does not precede w}. Now L	 � {w, x, y, z}, and
n(L	) � 4; therefore, we have

n(L) � n(U) � n(L	) Complement Formula
� 26 � 4
� 22

There are twenty-two letters preceding the letter w.

Shading Venn Diagrams

In an effort to visualize the results of operations on sets, it may be necessary to
shade specific regions of a Venn diagram. The following example shows a system-
atic method for shading the intersection or union of any two sets.

EXAMPLE 8 SHADING VENN DIAGRAMS On a Venn diagram, shade in the region cor-
responding to the indicated set.

a. A ¨ B	 b. A ´ B	

SOLUTION a. First, draw and label two overlapping circles as shown in Figure 2.9. The two “compo-
nents” of the operation A ¨ B	 are “A” and “B	.” Shade each of these components in
contrasting ways; shade one of them, say A, with horizontal lines, and the other with
vertical lines as in Figure 2.10. Be sure to include a legend, or key, identifying each type
of shading.

To be in the intersection of two sets, an element must be in both sets at the same
time. Therefore, the intersection of A and B	 is the region that is shaded in both
directions (horizontal and vertical) at the same time. A final diagram depicting A ¨ B	 is
shown in Figure 2.11.

U

A B

Two overlapping circles.

FIGURE 2.9

b. Refer to Figure 2.10. To be in the union of two sets, an element must be in at least one
of the sets. Therefore, the union of A and B	 consists of all regions that are shaded in any
direction whatsoever (horizontal or vertical or both). A final diagram depicting A ´ B	
is shown in Figure 2.12.
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Set Theory Logic
Common

Term Symbol Term Symbol Wording

union ´ disjunction ∨ or

intersection ¨ conjunction ∧ and

complement 	 negation � not

subset 8 conditional S if . . . then . . .

Comparison of terms and symbols used in set theory and logic.FIGURE 2.13

1. State whether the given set is well defined.

a. the set of all black automobiles

b. the set of all inexpensive automobiles

c. the set of all prime numbers

d. the set of all large numbers

2. Suppose A � {2, 5, 7, 9, 13, 25, 26}.

a. Find n(A)

b. True or false: 7 � A

c. True or false: 9 � A

d. True or false: 20 � A

2.1 Exercises

Basic Operations
in Set Theory Logical Biconditional

union [x � (A ´ B)] 4 [x � A ∨ x � B]

intersection [x � (A ¨ B)] 4 [x � A ∧ x � B]

complement (x � A	) 4 � (x � A)

subset (A 8 B) 4 (x � A S x � B)

Set theory operations as logical biconditionals.FIGURE 2.14

Set Theory and Logic

If you have read Chapter 1, you have probably noticed that set theory and logic
have many similarities. For instance, the union symbol ´ and the disjunction sym-
bol ∨ have the same meaning, but they are used in different circumstances; ´ goes
between sets, while ∨ goes between logical expressions. The ´ and ∨ symbols are
similar in appearance because their usages are similar. A comparison of the terms
and symbols used in set theory and logic is given in Figure 2.13.

Applying the concepts and symbols of Chapter 1, we can define the basic opera-
tions of set theory in terms of logical biconditionals. The biconditionals in Figure 2.14
are tautologies (expressions that are always true); the first biconditional is read as 
“x is an element of the union of sets A and B if and only if x is an element of set A or 
x is an element of set B.”
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2.1 Exercises 79

27. Suppose n(U) � 150, n(A) � 37, and n(B) � 84.

a. If n(A ´ B) � 100, find n(A ¨ B) and draw a Venn
diagram illustrating the composition of U.

b. If n(A ´ B) � 121, find n(A ¨ B) and draw a Venn
diagram illustrating the composition of U.

28. Suppose n(U) � w, n(A) � x, n(B) � y, and

n(A ´ B) � z.

a. Why must x be less than or equal to z?

b. If A � U and B � U, fill in the blank with the most
appropriate symbol: �, �, �, or 
.

w_____z, w_____y, y_____z, x_____w

c. Find n(A ¨ B) and draw a Venn diagram illustrating
the composition of U.

29. In a recent transportation survey, 500 high school sen-
iors were asked to check the appropriate box or boxes
on the following form:

I own an automobile.
I own a motorcycle.

The results were tabulated as follows: 102 students
checked the automobile box, 147 checked the motor-
cycle box, and 21 checked both boxes.

a. Draw a Venn diagram illustrating the results of the
survey.

b. What percent of these students own an automobile
or a motorcycle?

30. In a recent market research survey, 500 married
couples were asked to check the appropriate box
or boxes on the following form:

We own a DVD player.
We own a microwave oven.

The results were tabulated as follows: 301 couples
checked the DVD player box, 394 checked the
microwave oven box, and 217 checked both boxes.

a. Draw a Venn diagram illustrating the results of the
survey.

b. What percent of these couples own a DVD player or
a microwave oven?

31. In a recent socioeconomic survey, 700 married women
were asked to check the appropriate box or boxes on
the following form:

I have a career.
I have a child.

In Exercises 3–6, list all subsets of the given set. Identify which
subsets are proper and which are improper.

3. B � {Lennon, McCartney}
4. N � {0}
5. S � {yes, no, undecided}
6. M � {classical, country, jazz, rock}

In Exercises 7–10, the universal set is U � {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}.

7. If A � {1, 2, 3, 4, 5} and B � {4, 5, 6, 7, 8}, find the
following.

a. A ¨ B b. A ´ B

c. A	 d. B	

8. If A � {2, 3, 5, 7} and B � {2, 4, 6, 7}, find the
following.

a. A ¨ B b. A ´ B

c. A	 d. B	

9. If A � {1, 3, 5, 7, 9} and B � {0, 2, 4, 6, 8}, find the
following.

a. A ¨ B b. A ´ B

c. A	 d. B	

10. If A � {3, 6, 9} and B � {4, 8}, find the following.

a. A ¨ B b. A ´ B

c. A	 d. B	

In Exercises 11–16, the universal set is U � {Monday, Tuesday,
Wednesday, Thursday, Friday, Saturday, Sunday}. If
A � {Monday, Tuesday, Wednesday, Thursday, Friday} and
B � {Friday, Saturday, Sunday}, find the indicated set.

11. A ¨ B 12. A ´ B

13. B	 14. A	

15. A	 ´ B 16. A ¨ B	

In Exercises 17–26, use a Venn diagram like the one in 
Figure 2.15 to shade in the region corresponding to the
indicated set.

17. A ¨ B 18. A ´ B

19. A	 20. B	

21. A ´ B	 22. A	 ´ B

23. A	 ¨ B 24. A ¨ B	

25. A	 ´ B	 26. A	 ¨ B	

U

A B

Two overlapping circles.FIGURE 2.15
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80 CHAPTER 2 Sets and Counting

44. face cards or diamonds

45. face cards and black

46. face cards and diamonds

47. aces or 8’s 48. 3’s or 6’s

49. aces and 8’s 50. 3’s and 6’s

51. Suppose A � {1, 2, 3} and B � {1, 2, 3, 4, 5, 6}.

a. Find A ¨ B.

b. Find A ´ B.

c. In general, if E ¨ F � E, what must be true
concerning sets E and F?

d. In general, if E ´ F � F, what must be true
concerning sets E and F?

52. Fill in the blank, and give an example to support your
answer.

a. If A ( B, then A ¨ B � _____.

b. If A ( B, then A ´ B � _____.

53. a. List all subsets of A � {a}. How many subsets does
A have?

b. List all subsets of A � {a, b}. How many subsets
does A have?

c. List all subsets of A � {a, b, c}. How many subsets
does A have?

d. List all subsets of A � {a, b, c, d}. How many
subsets does A have?

e. Is there a relationship between the cardinal number of
set A and the number of subsets of set A?

f. How many subsets does A � {a, b, c, d, e, f} have?

HINT: Use your answer to part (e).

54. Prove the Cardinal Number Formula for the Comple-
ment of a Set.

HINT:Apply the Union/Intersection Formula to A and A	.

Answer the following questions using complete
sentences and your own words.

• Concept Questions

55. If A ¨ B � �, what is the relationship between sets
A and B?

56. If A ´ B � �, what is the relationship between sets
A and B?

57. Explain the difference between {0} and �.

58. Explain the difference between 0 and {0}.

59. Is it possible to have A ¨ A � �?

60. What is the difference between proper and improper
subsets?

61. Aset can be described by two methods: the roster method
and set-builder notation. When is it advantageous to use
the roster method? When is it advantageous to use set-
builder notation?

The results were tabulated as follows: 285 women
checked the child box, 316 checked the career box, and
196 were blank (no boxes were checked).

a. Draw a Venn diagram illustrating the results of the
survey.

b. What percent of these women had both a child and
a career?

32. In a recent health survey, 700 single men in their
twenties were asked to check the appropriate box or
boxes on the following form:

I am a member of a private gym. 
I am a vegetarian.

The results were tabulated as follows: 349 men
checked the gym box, 101 checked the vegetarian box,
and 312 were blank (no boxes were checked).

a. Draw a Venn diagram illustrating the results of the
survey.

b. What percent of these men were both members of a
private gym and vegetarians?

For Exercises 33–36, let

U � {x � x is the name of one of the states in the 
United States}

A � {x � x � U and x begins with the letter A}

I � {x � x � U and x begins with the letter I}

M � {x � x � U and x begins with the letter M}

N � {x � x � U and x begins with the letter N}

O � {x � x � U and x begins with the letter O}

33. Find n(M	). 34. Find n(A ´ N ).

35. Find n(I	 ¨ O	). 36. Find n(M ¨ I ).

For Exercises 37–40, let

U � {x � x is the name of one of the months in a year}

J � {x � x � U and x begins with the letter J}

Y � {x � x � U and x ends with the letter Y}

V � {x � x � U and x begins with a vowel}

R � {x � x � U and x ends with the letter R}

37. Find n(R	). 38. Find n(J ¨ V ).

39. Find n(J ´ Y ). 40. Find n(V ¨ R).

In Exercises 41–50, determine how many cards, in an ordinary
deck of fifty-two, fit the description. (If you are unfamiliar with
playing cards, see the end of Section 3.1 for a description of a
standard deck.)

41. spades or aces 42. clubs or 2’s

43. face cards or black

95057_02_ch02_p067-130.qxd  9/27/10  9:51 AM  Page 80

Prop
ert

y 
begins with the letter O}

Prop
ert

y 
begins with the letter O}

Find 

Prop
ert

y Find n

Prop
ert

y n(

Prop
ert

y (A

Prop
ert

y A(A(

Prop
ert

y (A( ´

Prop
ert

y ´ N

Prop
ert

y N ).

Prop
ert

y ).
Find 

Prop
ert

y 
Find n

Prop
ert

y 
n(

Prop
ert

y 
(M

Prop
ert

y 
M ¨

Prop
ert

y 
¨ I

Prop
ert

y 
I ).

Prop
ert

y 
).

is the name of one of the months in a year}

Prop
ert

y 

is the name of one of the months in a year}

and Prop
ert

y 

and x Prop
ert

y 

x begins with the letter J}Prop
ert

y 

begins with the letter J}

ends with the letter Y}Prop
ert

y 

ends with the letter Y}

of begins with the letter N} of begins with the letter N}
Cen

ga
ge

 does 

Cen
ga

ge
 does A

Cen
ga

ge
 A have?

Cen
ga

ge
 have?

List all subsets of 

Cen
ga

ge
 List all subsets of 

does 

Cen
ga

ge
 

does A

Cen
ga

ge
 

A have?

Cen
ga

ge
 

have?

d.

Cen
ga

ge
 

d. List all subsets of 

Cen
ga

ge
 

List all subsets of 
subsets does 

Cen
ga

ge
 

subsets does 

e.

Cen
ga

ge
 

e. Is there a relationship between the cardinal number of

Cen
ga

ge
 

Is there a relationship between the cardinal number of

Le
arn

ing
 

Fill in the blank, and give an example to support your

Le
arn

ing
 

Fill in the blank, and give an example to support your

B

Le
arn

ing
 

B �

Le
arn

ing
 

� _____.

Le
arn

ing
 

_____.

´

Le
arn

ing
 

´ B

Le
arn

ing
 

B �

Le
arn

ing
 

� _____.

Le
arn

ing
 

_____.

List all subsets of 

Le
arn

ing
 

List all subsets of A

Le
arn

ing
 

A �

Le
arn

ing
 

� {a}. How many subsets does

Le
arn

ing
 

{a}. How many subsets does

List all subsets of Le
arn

ing
 

List all subsets of ALe
arn

ing
 

A
have?Le

arn
ing

 

have?



2.2 Applications of Venn Diagrams 81

65. Which of the following pairs of groups selected by
John and Juneko conform to the restrictions?

John Juneko

a. J, K, L M, N, O

b. J, K, P L, M, N

c. K, N, P J, M, O

d. L, M, N K, O, P

e. M, O, P J, K, N

66. If N is in John’s group, which of the following could
not be in Juneko’s group?

a. J b. K c. L d. M e. P

67. If K and N are in John’s group, Juneko’s group must
consist of which of the following?

a. J, M, and O

b. J, O, and P

c. L, M, and P

d. L, O, and P

e. M, O, and P

68. If J is in Juneko’s group, which of the following is true?

a. K cannot be in John’s group.

b. N cannot be in John’s group.

c. O cannot be in Juneko’s group.

d. P must be in John’s group.

e. P must be in Juneko’s group.

69. If K is in John’s group, which of the following is true?

a. J must be in John’s group.

b. O must be in John’s group.

c. L must be in Juneko’s group.

d. N cannot be in John’s group.

e. O cannot be in Juneko’s group.

62. Translate the following symbolic expressions into
English sentences.

a. x � (A ¨ B) 4 (x � A ∧ x � B)

b. (x � A	) 4 � (x � A)

c. (A 8 B) 4 (x � A S x � B)

• history Questions

63. In what academic field was John Venn a professor?
Where did he teach?

64. What was one of John Venn’s main contributions to the
field of logic? What new benefits did it offer?

Exercises 65–69 refer to the following: Two collectors, John and
Juneko, are each selecting a group of three posters from a group
of seven movie posters: J, K, L, M, N, O, and P. No poster can be
in both groups. The selections made by John and Juneko are
subject to the following restrictions:

● If K is in John’s group, M must be in Juneko’s group.
● If N is in John’s group, P must be in Juneko’s group.
● J and P cannot be in the same group.
● M and O cannot be in the same group.

THE NEXT LEVEL
If a person wants to pursue an advanced degree
(something beyond a bachelor’s or four-year
degree), chances are the person must take a stan-
dardized exam to gain admission to a school or to
be admitted into a specific program. These exams
are intended to measure verbal, Quantitative, and
analytical skills that have developed throughout a
person’s life. Many classes and study guides are
available to help people prepare for the exams.
The following questions are typical of those
found in the study guides.

2.2 Applications of Venn Diagrams

Objectives

• Use Venn diagrams to analyze the results of surveys

• Develop and apply De Morgan’s Laws of complements

As we have seen, Venn diagrams are very useful tools for visualizing the relation-
ships between sets. They can be used to establish general formulas involving set
operations and to determine the cardinal numbers of sets. Venn diagrams are par-
ticularly useful in survey analysis.
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82 CHAPTER 2 Sets and Counting

Surveys

Surveys are often used to divide people or objects into categories. Because the cat-
egories sometimes overlap, people can fall into more than one category. Venn dia-
grams and the formulas for cardinal numbers can help researchers organize the data.

EXAMPLE 1 ANALYZING THE RESULTS OF A SURVEY: TWO SETS Has the advent
of the DVD affected attendance at movie theaters? To study this question,
Professor Redrum’s film class conducted a survey of people’s movie-watching
habits. He had his students ask hundreds of people between the ages of sixteen and
forty-five to check the appropriate box or boxes on the following form:

After the professor had collected the forms and tabulated the results, he told the
class that 388 people had checked the theater box, 495 had checked the DVD box,
281 had checked both boxes, and 98 of the forms were blank. Giving the class only
this information, Professor Redrum posed the following three questions.

a. What percent of the people surveyed watched a movie in a theater or on a DVD during
the past month?

b. What percent of the people surveyed watched a movie in a theater only?
c. What percent of the people surveyed watched a movie on a DVD only?

SOLUTION a. To calculate the desired percentages, we must determine n(U), the total number of peo-
ple surveyed. This can be accomplished by drawing a Venn diagram. Because the sur-
vey divides people into two categories (those who watched a movie in a theater and
those who watched a movie on a DVD), we need to define two sets. Let

T � {people � the person watched a movie in a theater}

D � {people � the person watched a movie on a DVD}

Now translate the given survey information into the symbols for the sets and attach their
given cardinal numbers: n(T) � 388, n(D) � 495, and n(T ¨ D) � 281.

Our first goal is to find n(U ). To do so, we will fill in the cardinal numbers of all
regions of a Venn diagram consisting of two overlapping circles (because we are
dealing with two sets). The intersection of T and D consists of 281 people, so we draw
two overlapping circles and fill in 281 as the number of elements in common (see
Figure 2.16).

Because we were given n(T) � 388 and know that n(T ¨ D) � 281, the difference
388 � 281 � 107 tells us that 107 people watched a movie in a theater but did not
watch a movie on a DVD. We fill in 107 as the number of people who watched a movie
only in a theater (see Figure 2.17).

Because n(D) � 495, the difference 495 � 281 � 214 tells us that 214 people
watched a movie on a DVD but not in a theater. We fill in 214 as the number of people
who watched a movie only on a DVD (see Figure 2.18).

The only region remaining to be filled in is the region outside both circles. This
region represents people who didn’t watch a movie in a theater or on a DVD and
is symbolized by (T ´ D)	. Because 98 people didn’t check either box on the form,
n[(T ´ D)	] � 98 (see Figure 2.19).

After we have filled in the Venn diagram with all the cardinal numbers, we readily see
that n(U) � 98 � 107 � 281 � 214 � 700. Therefore, 700 people were in the survey.

I watched a movie in a theater during the past month.
I watched a movie on a DVD during the past month.

U

T D
281

n(T ¨ D) � 281.

FIGURE 2.16

U

T

107
281

D

n(T ´ D	) � 107.

FIGURE 2.17
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To determine what percent of the people surveyed watched a movie in a theater or
on a DVD during the past month, simply divide n(T ´ D) by n(U):

� 0.86

Therefore, exactly 86% of the people surveyed watched a movie in a theater or on
a DVD during the past month.

b. To find what percent of the people surveyed watched a movie in a theater only, divide
107 (the number of people who watched a movie in a theater only) by n(U):

L 0.153 (rounding off to three decimal places)

Approximately 15.3% of the people surveyed watched a movie in a theater only.
c. Because 214 people watched a movie on DVD only, 214�700 � 0.305714285 . . . , or 

approximately 30.6%, of the people surveyed watched a movie on DVD only.

When you solve a cardinal number problem (a problem that asks, “How
many?” or “What percent?”) involving a universal set that is divided into various
categories (for instance, a survey), use the following general steps.

107

700
� 0.152857142 . . .

 �
602

700

 
n1T ´ D 2

n1U 2 �
107 � 281 � 214

700

U

T

107
281

214

98

D

Completed Venn diagram.

FIGURE 2.19

U

T

107
281

214

D

n(D ¨ T	) � 214.

FIGURE 2.18

U

A B

C

Three overlapping circles.

FIGURE 2.20
When we are working with three sets, we must account for all possible inter-

sections of the sets. Hence, in such cases, we will use the Venn diagram shown in
Figure 2.20

EXAMPLE 2 ANALYZING THE RESULTS OF A SURVEY: THREE SETS A consumer
survey was conducted to examine patterns in ownership of notebook computers,
cellular telephones, and DVD players. The following data were obtained:
213 people had notebook computers, 294 had cell phones, 337 had DVD players,
109 had all three, 64 had none, 198 had cell phones and DVD players, 382 had cell
phones or notebook computers, and 61 had notebook computers and DVD players
but no cell phones.

a. What percent of the people surveyed owned a notebook computer but no DVD player or
cell phone?

SOLVING A CARDINAL NUMBER PROBLEM
A cardinal number problem is a problem in which you are asked, “How
many?” or “What percent?”
1. Define a set for each category in the universal set. If a category and its negation

are both mentioned, define one set A and utilize its complement A	.
2. Draw a Venn diagram with as many overlapping circles as the number of sets

you have defined.
3. Write down all the given cardinal numbers corresponding to the various given sets.
4. Starting with the innermost overlap, fill in each region of the Venn diagram

with its cardinal number.
5. In answering a “what percent” problem, round off your answer to the nearest

tenth of a percent.
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b. What percent of the people surveyed owned a DVD player but no notebook computer or
cell phone?

SOLUTION a. To calculate the desired percentages, we must determine n(U), the total number of
people surveyed. This can be accomplished by drawing a Venn diagram. Because the
survey divides people into three categories (those who own a notebook computer,
those who own a cell phone, and those who own a DVD player), we need to define
three sets. Let

C � {people � the person owns a notebook computer}

T � {people � the person owns a cellular telephone}

D � {people � the person owns a DVD player}

Now translate the given survey information into the symbols for the sets and attach their
given cardinal numbers:

Our first goal is to find n(U). To do so, we will fill in the cardinal numbers of all
regions of a Venn diagram like that in Figure 2.20. We start by using information
concerning membership in all three sets. Because the intersection of all three sets
consists of 109 people, we fill in 109 in the region common to C and T and D (see
Figure 2.21).

Next, we utilize any information concerning membership in two of the three sets. Be-
cause n(T ¨ D) � 198, a total of 198 people are common to both T and D; some are in C,
and some are not in C. Of these 198 people, 109 are in C (see Figure 2.21). Therefore, the
difference 198 � 109 � 89 gives the number not in C. Eighty-nine people are in T and D
and not in C; that is, n(T ¨ D ¨ C	) � 89. Concerning membership in the two sets C and
D, we are given n(C ¨ D ¨ T	) � 61. Therefore, we know that 61 people are in C and D
and not in T (see Figure 2.22).

We are given n(T ´ C) � 382. From this number, we can calculate n(T ¨ C) by
using the Union/Intersection Formula:

n(T ´ C) � n(T ) � n(C) – n(T ¨ C)

382 � 294 � 213 – n(T ¨ C)

n(T ¨ C) � 125

Therefore, a total of 125 people are in T and C; some are in D, and some are not
in D. Of these 125 people, 109 are in D (see Figure 2.21). Therefore, the difference

U

109

C T

D

U

109
61 89

C T

D

n(C ¨ T ¨ D) � 109.

FIGURE 2.21

Determining cardinal numbers
in a Venn diagram.

FIGURE 2.22

213 people had notebook computers ¬¬¬¬¬¬¬S n(C) � 213

294 had cellular telephones ¬¬¬¬¬¬¬¬¬¬¬S n(T) � 294

337 had DVD players ¬¬¬¬¬¬¬¬¬¬¬¬¬S n(D) � 337

109 had all three ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬S n(C ¨ T ¨ D) � 109
(C and T and D)

64 had none ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬S n(C� ¨ T� ¨ D� ) � 64 
(not C and not T and not D)

198 had cell phones and DVD players ¬¬¬¬¬¬S n(T ¨ D) � 198 
(T and D)

382 had cell phones or notebook computers ¬¬¬¬S n(T ´ C) � 382 
(T or C)

61 had notebook computers and DVD players
but no cell phones ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬S n(C ¨ D ¨ T	) � 61 
(C and D and not T)
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U

109

16

61 89

C T

D

Determining cardinal
numbers in a Venn diagram.

FIGURE 2.23 Determining cardinal numbers
in a Venn diagram.

FIGURE 2.24

U

109
80

16

61 89

C T

D

125 � 109 � 16 gives the number not in D. Sixteen people are in T and C and not
in D; that is, n(C ¨ T ¨ D	) � 16 (see Figure 2.23).

Knowing that a total of 294 people are in T (given n(T) � 294), we are now able to
fill in the last region of T. The missing region (people in T only) has 294 � 109 � 89 �
16 � 80 members; n(T ¨ C	 ¨ D	) � 80 (see Figure 2.24).

In a similar manner, we subtract the known pieces of C from n(C) � 213, which is
given, and obtain 213 � 61 � 109 � 16 � 27; therefore, 27 people are in C only.
Likewise, to find the last region of D, we use n(D) � 337 (given) and obtain 337 � 89 �
109 � 61 � 78; therefore, 78 people are in D only. Finally, the 64 people who own none
of the items are placed “outside” the three circles (see Figure 2.25).

By adding up the cardinal numbers of all the regions in Figure 2.25, we find that the
total number of people in the survey is 524; that is, n(U) � 524.

Now, to determine what percent of the people surveyed owned only a notebook
computer (no DVD player and no cell phone), we simply divide n(C ¨ D	 ¨ T	) by
n(U):

� 0.051526717 . . .

Approximately 5.2% of the people surveyed owned a notebook computer and did not
own a DVD player or a cellular telephone.

b. To determine what percent of the people surveyed owned only a DVD player (no note-
book computer and no cell phone), we divide n(D ¨ C	 ¨ T	) by n(U):

� 0.148854961. . .

Approximately 14.9% of the people surveyed owned a DVD player and did not own a
notebook computer or a cell phone.

De Morgan’s Laws

One of the basic properties of algebra is the distributive property:

Given a(b � c), the operation outside the parentheses can be distributed over the
operation inside the parentheses. It makes no difference whether you add b and c
first and then multiply the sum by a or first multiply each pair, a and b, a and c, and
then add their products; the same result is obtained. Is there a similar property for
the complement, union, and intersection of sets?

a1b � c 2 � ab � ac

n1D º C	º T	 2
n1U 2  �

78

524

n1C º D	º  T	 2
n1U 2 �

27

524

A completed Venn diagram.

FIGURE 2.25
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D
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EXAMPLE 3 INVESTIGATING THE COMPLEMENT OF A UNION Suppose U �
{1, 2, 3, 4, 5}, A � {1, 2, 3}, and B � {2, 3, 4}.

a. For the given sets, does (A ´ B)	 � A	 ´ B	?
b. For the given sets, does (A ´ B)	 � A	 ¨ B	?

SOLUTION a. To find (A ´ B)	, we must first find A ´ B:

The complement of A ´ B (relative to the given universal set U) is

To find A	 ´ B	, we must first find A	 and B	:

The union of A	 and B	 is

Now, {5} � {1, 4, 5}; therefore, (A ´ B)	 � A	 ´ B	.
b. We find (A ´ B)	 as in part (a): (A ´ B)	 � {5}. Now,

For the given sets, (A ´ B)	 � A	 ¨ B	.

Part (a) of Example 3 shows that the operation of complementation cannot be
explicitly distributed over the operation of union; that is, (A ´ B)	 � A	 ´ B	.
However, part (b) of the example implies that there may be some relationship
between the complement, union, and intersection of sets. The fact that (A ´ B)	 �
A	 ¨ B	 for the given sets A and B does not mean that it is true for all sets A and B.
We will use a general Venn diagram to examine the validity of the statement 
(A ´ B)	 � A	 ¨ B	.

When we draw two overlapping circles within a universal set, four regions
are formed. Every element of the universal set U is in exactly one of the following
regions, as shown in Figure 2.26:

I in neither A nor B
II in A and not in B
III in both A and B
IV in B and not in A

The set A ´ B consists of all elements in regions II, III, and IV. Therefore, the
complement (A ´ B)	 consists of all elements in region I. A	 consists of all ele-
ments in regions I and IV, and B	 consists of the elements in regions I and II. There-
fore, the elements common to both A	 and B	 are those in region I; that is, the set
A	 ¨ B	 consists of all elements in region I. Since (A ´ B)	 and A	 ¨ B	 contain ex-
actly the same elements (those in region I), the sets are equal; that is, (A ´ B)	 �
A	 ¨ B	 is true for all sets A and B.

The relationship (A ´ B)	 � A	 ¨ B	 is known as one of De Morgan’s
Laws. Simply stated, “the complement of a union is the intersection of the com-
plements.” In a similar manner, it can be shown that (A ¨ B)	 � A	 ´ B	 (see
Exercise 33).

� 556
A	 � B	 � 54, 56 � 51, 56

� 51, 4, 56
A	 ´ B	 � 54, 56 ´ 51, 56

A	 � 54, 56  and  B	 � 51, 56

1A ´ B 2 	 � 556

� 51, 2, 3, 46
A ´ B � 51, 2, 36 ´ 52, 3, 46

Four regions in a universal 
set U.

FIGURE 2.26

U

III

IVII

I

A B
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Being born blind in one eye
did not stop Augustus De

Morgan from becoming a
well-read philosopher, histo-
rian, logician, and mathemati-
cian. De Morgan was born in
Madras, India, where his father was
working for the East India Company.
On moving to England, De Morgan
was educated at Cambridge, and at the
age of twenty-two, he became the first
professor of mathematics at the newly
opened University of London (later re-
named University College).

De Morgan viewed all of mathemat-
ics as an abstract study of symbols and
of systems of operations applied to these
symbols. While studying the ramifica-
tions of symbolic logic, De Morgan for-
mulated the general properties of
complementation that now bear his
name. Not limited to symbolic logic,
De Morgan’s many works include books
and papers on the foundations of alge-
bra, differential calculus, and probabil-
ity. He was known to be a jovial person
who was fond of puzzles, and his witty
and amusing book A Budget of Para-
doxes still entertains readers today.
Besides his accomplishments in the aca-
demic arena, De Morgan was an ex-
pert flutist, spoke five languages, and
thoroughly enjoyed big-city life.

Knowing of his interest in probabil-
ity, an actuary (someone who studies
life expectancies and determines
payments of premiums for insurance

companies) once
asked De Morgan a
question concerning
the probability that a
certain group of peo-
ple would be alive at
a certain time. In his re-
sponse, De Morgan
employed a formula

containing the number p. In amaze-
ment, the actuary responded, “That
must surely be a delusion! What can a
circle have to do with the number of
people alive at a certain time?” De
Morgan replied that p has numerous
applications and occurrences in many
diverse areas of mathematics. Because
it was first defined and used in geome-
try, people are conditioned to accept
the mysterious number only in reference
to a circle. However, in the history of
mathematics, if probability had been
systematically studied before geometry
and circles, our present-day inter-
pretation of the number p would be
entirely different. In addition to his ac-
complishments in logic and higher-level
mathematics, De Morgan introduced a
convention with which we are all familiar:
In a paper written in 1845, he suggested
the use of a slanted line to represent
a fraction, such as 1�2 or 3�4.

De Morgan was a staunch defender
of academic freedom and religious tol-
erance. While he was a student at
Cambridge, his application for a fellow-
ship was refused because he would not
take and sign a theological oath. Later
in life, he resigned his professorship as a
protest against religious bias. (University

College gave preferential treatment to
members of the Church of England
when textbooks were selected and did
not have an open policy on religious
philosophy.) Augustus De Morgan was
a man who was unafraid to take a stand
and make personal sacrifices when it
came to principles he believed in.

Historical
Note

AUGUSTUS DE MORGAN, 1806–1871

©
 B

et
tm

an
n/

CO
RB

IS

Gematria is a mystic pseudoscience in which
numbers are substituted for the letters in a name. De
Morgan’s book A Budget of Paradoxes contains
several gematria puzzles, such as, “Mr. Davis Thom
found a young gentleman of the name of St. Claire
busy at the Beast number: he forthwith added the
letters in ������� (the Greek spelling of St. Claire)
and found 666.” (Verify this by using the Greek
numeral system.)

DE MORGAN’S LAWS
For any sets A and B,

(A ´ B)	 � A	 ¨ B	

That is, the complement of a union is the intersection of the complements. Also,

(A ¨ B)	 � A	 ´ B	

That is, the complement of an intersection is the union of the complements.
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Human blood types are a classic
example of set theory. As you may

know, there are four categories (or sets)
of blood types: A, B, AB, and O. Know-
ing someone’s blood type is extremely
important in case a blood transfusion is
required; if blood of two different types
is combined, the blood cells may begin
to clump together, with potentially fatal
consequences! (Do you know your
blood type?)

What exactly are “blood types”? In
the early 1900s, the Austrian scientist
Karl Landsteiner observed the presence
(or absence) of two distinct chemical
molecules on the surface of all red blood
cells in numerous samples of human
blood. Consequently, he labeled one
molecule “A” and the other “B.” The
presence or absence of these specific
molecules is the basis of the universal
classification of blood types. Specifi-
cally, blood samples containing only the
A molecule are labeled type A, whereas
those containing only the B molecule are
labeled type B. If a blood sample con-
tains both molecules (A and B) it is la-
beled type AB; and if neither is present,
the blood is typed as O. The presence
(or absence) of these molecules can be
depicted in a standard Venn diagram as
shown in Figure 2.27. In the notation of
set operations, type A blood is denoted
A ¨ B	, type B is B ¨ A	, type AB is 
A ¨ B, and type O is A	 ¨ B	.

If a specific blood sample is mixed
with blood containing a blood molecule
(A or B) that it does not already have,

Topic x

the presence of the foreign molecule
may cause the mixture of blood to
clump. For example, type A blood can-
not be mixed with any blood containing
the B molecule (type B or type AB).
Therefore, a person with type A blood
can receive a transfusion only of type A
or type O blood. Consequently, a per-
son with type AB blood may receive a
transfusion of any blood type; type AB is
referred to as the “universal receiver.”
Because type O blood contains neither
the A nor the B molecule, all blood types
are compatible with type O blood; type
O is referred to as the “universal donor.”

It is not uncommon for scientists to
study rhesus monkeys in an effort to learn
more about human physiology. In so
doing, a certain blood protein was dis-
covered in rhesus monkeys. Subse-
quently, scientists found that the blood of
some people contained this protein,
whereas the blood of others did not. The
presence, or absence, of this protein in

human blood is referred to as the Rh
factor; blood containing the protein is la-
beled “Rh+”, whereas “Rh–” indicates
the absence of the protein. The Rh factor
of human blood is especially important
for expectant mothers; a fetus can de-
velop problems if its parents have oppo-
site Rh factors.

When a person’s blood is typed, the
designation includes both the regular
blood type and the Rh factor. For in-
stance, type AB– indicates the presence
of both the A and B molecules (type AB),
along with the absence of the rhesus
protein; type O+ indicates the absence
of both the A and B molecules (type O),
along with the presence of the rhesus
protein. Utilizing the Rh factor, there are
eight possible blood types as shown in
Figure 2.28.

We will investigate the occurrence
and compatibility of the various blood
types in Example 5 and in Exercises
35–43.

Blood types and the
presence of the A
and B molecules.

FIGURE 2.27 Blood types combined
with the Rh factor.

FIGURE 2.28

BLOOD TYPES: 
SET THEORY IN THE REAL WORLD

O

AB
A B

O�

O�

AB�
AB�

A�

A�

B�

B�

EXAMPLE 4 APPLYING DE MORGAN’S LAW Suppose U � {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
A � {2, 3, 7, 8}, and B � {0, 4, 5, 7, 8, 9}. Use De Morgan’s Law to find (A	 ´ B)	.

SOLUTION The complement of a union is equal to the intersection of the complements; there-
fore, we have

(A	 ´ B)	 � (A	)	 ¨ B	 De Morgan’s Law
� A ¨ B	 (A�)� � A
� {2, 3, 7, 8} ¨ {1, 2, 3, 6}
� {2, 3}
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2.2 Applications of Venn Diagrams 89

Notice that this problem could be done without using De Morgan’s Law, but
solving it would then involve finding first A	, then A	 ´ B, and finally (A	 ´ B)	.
This method would involve more work. (Try it!)

EXAMPLE 5 INVESTIGATING BLOOD TYPES IN THE UNITED STATES The
American Red Cross has compiled a massive database of the occurrence of
blood types in the United States. Their data indicate that on average, out of
every 100 people in the United States, 44 have the A molecule, 15 have the B
molecule, and 45 have neither the A nor the B molecule. What percent of the 
U.S. population have the following blood types?

a. Type O? b. Type AB? c. Type A? d. Type B?

SOLUTION a. First, we define the appropriate sets. Let

A � {Americans � the person has the A molecule}

B � {Americans � the person has the B molecule}

We are given the following cardinal numbers: n(U) � 100, n(A) � 44, n(B) � 15, and
n(A	 � B	) � 45. Referring to Figure 2.27, and given that 45 people (out of 100) have
neither the A molecule nor the B molecule, we conclude that 45 of 100 people, or 45%,
have type O blood as shown in Figure 2.29.

b. Applying De Morgan’s Law to the Complement Formula, we have the following.

n(A � B) � n[(A � B)	] � n(U) Complement Formula
n(A � B) � n(A	 � B	) � n(U) applying De Morgan’s Law 

n(A � B) � 45 � 100 substituting known values

Therefore, n(A � B) � 55.
Now, use the Union/Intersection Formula.

n(A � B) � n(A) � n(B) � n(A � B) Union/Intersection Formula

55 � 44 � 15 � n(A � B) substituting known values

n(A � B) � 44 � 15 � 55 adding n(A � B) and subtracting 55

Therefore, n(A � B) � 4. This means that 4 people (of 100) have both the A
and the B molecules; that is, 4 of 100 people, or 4%, have type AB blood. See
Figure 2.30.

c. Knowing that a total of 44 people have the A molecule, that is, n(A) � 44, we subtract
n(A � B) � 4 and conclude that 40 have only the A molecule.

Therefore, n(A � B	) � 40. This means that 40 people (of 100) have only the
A molecule; that is, 40 of 100 people, or 40%, have type A blood. See Figure 2.31.

d. Knowing that a total of 15 people have the B molecule, that is, n(B) � 15, we subtract
n(A � B) � 4 and conclude that 11 have only the B molecule.

Therefore, n(B � A	) � 11. This means that 11 people (of 100) have only the
B molecule; that is, 11 of 100 people, or 11%, have type B blood (see Figure 2.32).

45

O

ABA B

Forty-five of 100 (45%) have
type O blood.

FIGURE 2.29

45

O

AB

4
A B

Four in 100 (4%) have type
AB blood.

FIGURE 2.30

45

O

AB

4
B

40

A

45

40

O

AB

4 11

A B

Forty in 100 (40%)
have type A blood.

FIGURE 2.31 Eleven in 100 (11%)
have type B blood.

FIGURE 2.32
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The occurrence of blood types in the United States is summarized in Figure 2.33.

90 CHAPTER 2 Sets and Counting

Blood Type O A B AB

Occurrence 45% 40% 11% 4%

Occurrence of blood types in the United States.FIGURE 2.33

1. A survey of 200 people yielded the following
information: 94 people owned a DVD player, 127
owned a microwave oven, and 78 owned both. How
many people owned the following?

a. a DVD player or a microwave oven

b. a DVD player but not a microwave oven

c. a microwave oven but not a DVD player

d. neither a DVD player nor a microwave oven

2. A survey of 300 workers yielded the following
information: 231 workers belonged to a union, and 195
were Democrats. If 172 of the union members were
Democrats, how many workers were in the following
situations?

a. belonged to a union or were Democrats

b. belonged to a union but were not Democrats

c. were Democrats but did not belong to a union

d. neither belonged to a union nor were Democrats

3. The records of 1,492 high school graduates were exam-
ined, and the following information was obtained:
1,072 graduates took biology, and 679 took geometry.
If 271 of those who took geometry did not take
biology, how many graduates took the following?

a. both classes

b. at least one of the classes

c. biology but not geometry

d. neither class

4. A department store surveyed 428 shoppers, and the
following information was obtained: 214 shoppers
made a purchase, and 299 were satisfied with the
service they received. If 52 of those who made a
purchase were not satisfied with the service, how many
shoppers did the following?

a. made a purchase and were satisfied with the service

b. made a purchase or were satisfied with the service

c. were satisfied with the service but did not make a
purchase

d. were not satisfied and did not make a purchase

5. In a survey, 674 adults were asked what television
programs they had recently watched. The following
information was obtained: 226 adults watched neither
the Big Game nor the New Movie, and 289 watched
the New Movie. If 183 of those who watched the New
Movie did not watch the Big Game, how many of the
surveyed adults watched the following?

a. both programs

b. at least one program

c. the Big Game

d. the Big Game but not the New Movie

2.2 Exercises

Blood types per 100 people in the United States. (Source: American Red Cross.)FIGURE 2.34

Blood Type O+ O– A+ A– B+ B– AB+ AB–

Occurrence 38 7 34 6 9 2 3 1

The occurrence of blood types given in Figure 2.33 can be further catego-
rized by including the Rh factor. According to the American Red Cross, out of
every 100 people in the United States, blood types and Rh factors occur at the rates
shown in Figure 2.34.
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telephones, and DVD players. The following data
were obtained: 313 people had laptop computers,
232 had cell phones, 269 had DVD players, 69 had all
three, 64 had none, 98 had cell phones and DVD
players, 57 had cell phones but no computers or DVD
players, and 104 had computers and DVD players but
no cell phones.

a. What percent of the people surveyed owned a cell
phone?

b. What percent of the people surveyed owned only
a cell phone?

12. In a recent survey of monetary donations made by
college graduates, the following information was
obtained: 95 graduates had donated to a political
campaign, 76 had donated to assist medical research,
133 had donated to help preserve the environment, 25
had donated to all three, 22 had donated to none of the
three, 38 had donated to a political campaign and
to medical research, 46 had donated to medical
research and to preserve the environment, and 54 had
donated to a political campaign and to preserve the
environment.

a. What percent of the college graduates donated to
none of the three listed causes?

b. What percent of the college graduates donated to
exactly one of the three listed causes?

13. Recently, Green Day, the Kings of Leon, and the Black
Eyed Peas had concert tours in the United States. A
large group of college students was surveyed, and the
following information was obtained: 381 students saw
Black Eyed Peas, 624 saw the Kings of Leon, 712 
saw Green Day, 111 saw all three, 513 saw none, 240 saw
only Green Day, 377 saw Green Day and the Kings of
Leon, and 117 saw the Kings of Leon and Black Eyed
Peas but not Green Day.

a. What percent of the college students saw at least
one of the bands?

b. What percent of the college students saw exactly
one of the bands?

14. Dr. Hawk works in an allergy clinic, and his patients
have the following allergies: 68 patients are allergic to
dairy products, 93 are allergic to pollen, 91 are allergic
to animal dander, 31 are allergic to all three, 29 are
allergic only to pollen, 12 are allergic only to dairy
products, and 40 are allergic to dairy products and
pollen.

a. What percent of Dr. Hawk’s patients are allergic to
animal dander?

b. What percent of Dr. Hawk’s patients are allergic
only to animal dander?

15. When the members of the Eye and I Photo Club
discussed what type of film they had used during
the past month, the following information was
obtained: 77 members used black and white, 24 used
only black and white, 65 used color, 18 used only

6. A survey asked 816 college freshmen whether they
had been to a movie or eaten in a restaurant during the
past week. The following information was obtained:
387 freshmen had been to neither a movie nor a
restaurant, and 266 had been to a movie. If 92 of those
who had been to a movie had not been to a restaurant,
how many of the surveyed freshmen had been to the
following?

a. both a movie and a restaurant

b. a movie or a restaurant

c. a restaurant

d. a restaurant but not a movie

7. A local 4-H club surveyed its members, and the
following information was obtained: 13 members had
rabbits, 10 had goats, 4 had both rabbits and goats, and
18 had neither rabbits nor goats. 

a. What percent of the club members had rabbits or
goats?

b. What percent of the club members had only rabbits?

c. What percent of the club members had only goats?

8. A local anime fan club surveyed its members regarding
their viewing habits last weekend, and the following
information was obtained: 30 members had watched an
episode of Naruto, 44 had watched an episode of
Death Note, 21 had watched both an episode of Naruto
and an episode of Death Note, and 14 had watched
neither Naruto nor Death Note.

a. What percent of the club members had watched
Naruto or Death Note?

b. What percent of the club members had watched
only Naruto?

c. What percent of the club members had watched
only Death Note?

9. A recent survey of w shoppers (that is, n(U) � w)
yielded the following information: x shoppers
shopped at Sears, y shopped at JCPenney’s, and z
shopped at both. How many people shopped at the
following?

a. Sears or JCPenney’s

b. only Sears

c. only JCPenney’s

d. neither Sears nor JCPenney’s

10. A recent transportation survey of w urban commuters
(that is, n(U) � w) yielded the following information:
x commuters rode neither trains nor buses, y rode
trains, and z rode only trains. How many people rode
the following?

a. trains and buses

b. only buses

c. buses

d. trains or buses

11. A consumer survey was conducted to examine
patterns in ownership of laptop computers, cellular
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20. In a recent health insurance survey, employees
at a large corporation were asked, “Have you been
a patient in a hospital during the past year, and if so,
for what reason?” The following results were
obtained: 494 employees had an injury, 774 had an
illness, 1,254 had tests, 238 had an injury and an ill-
ness and tests, 700 had an illness and tests, 501 had
tests and no injury or illness, 956 had an injury or
illness, and 1,543 had not been a patient.

a. What percent of the employees had been patients in
a hospital?

b. What percent of the employees had tests in a
hospital?

In Exercises 21 and 22, use a Venn diagram like the one in
Figure 2.35.

color, 101 used black and white or color, 27 used
infrared, 9 used all three types, and 8 didn’t use any
film during the past month.

a. What percent of the members used only infrared
film?

b. What percent of the members used at least two of
the types of film?

16. After leaving the polls, many people are asked how
they voted. (This is called an exit poll.) Concerning
Propositions A, B, and C, the following information
was obtained: 294 people voted yes on A, 90 voted
yes only on A, 346 voted yes on B, 166 voted yes
only on B, 517 voted yes on A or B, 339 voted yes on
C, no one voted yes on all three, and 72 voted no on
all three.

a. What percent of the voters in the exit poll voted no
on A?

b. What percent of the voters voted yes on more than
one proposition?

17. In a recent survey, consumers were asked where they
did their gift shopping. The following results were
obtained: 621 consumers shopped at Macy’s, 513
shopped at Emporium, 367 shopped at Nordstrom,
723 shopped at Emporium or Nordstrom, 749
shopped at Macy’s or Nordstrom, 776 shopped at
Macy’s or Emporium, 157 shopped at all three,
96 shopped at neither Macy’s nor Emporium nor
Nordstrom.

a. What percent of the consumers shopped at more
than one store?

b. What percent of the consumers shopped exclusively
at Nordstrom?

18. A company that specializes in language tutoring lists
the following information concerning its English-
speaking employees: 23 employees speak German; 25
speak French; 31 speak Spanish; 43 speak Spanish or
French; 38 speak French or German; 46 speak German
or Spanish; 8 speak Spanish, French, and German; and
7 speak English only.

a. What percent of the employees speak at least one
language other than English?

b. What percent of the employees speak at least two
languages other than English?

19. In a recent survey, people were asked which radio
station they listened to on a regular basis. The following
results were obtained: 140 people listened to WOLD
(oldies), 95 listened to WJZZ (jazz), 134 listened to
WTLK (talk show news), 235 listened to WOLD or
WJZZ, 48 listened to WOLD and WTLK, 208 listened
to WTLK or WJZZ, and 25 listened to none.

a. What percent of people in the survey listened only
to WTLK on a regular basis?

b. What percent of people in the survey did not listen
to WTLK on a regular basis?
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21. A survey of 136 pet owners yielded the following
information: 49 pet owners own fish; 55 own a bird;
50 own a cat; 68 own a dog; 2 own all four; 11 own
only fish; 14 own only a bird; 10 own fish and a bird;
21 own fish and a cat; 26 own a bird and a dog; 27 own
a cat and a dog; 3 own fish, a bird, a cat, and no dog;
1 owns fish, a bird, a dog, and no cat; 9 own fish, a cat,
a dog, and no bird; and 10 own a bird, a cat, a dog, and
no fish. How many of the surveyed pet owners have no
fish, no birds, no cats, and no dogs? (They own other
types of pets.)

22. An exit poll of 300 voters yielded the following
information regarding voting patterns on Propositions
A, B, C, and D: 119 voters voted yes on A; 163 voted
yes on B; 129 voted yes on C; 142 voted yes on D; 37
voted yes on all four; 15 voted yes on A only; 50 voted
yes on B only; 59 voted yes on A and B; 70 voted yes
on A and C; 82 voted yes on B and D; 93 voted yes on
C and D; 10 voted yes on A, B, and C and no on D; 2
voted yes on A, B, and D and no on C; 16 voted yes on
A, C, and D and no on B; and 30 voted yes on B, C, and
D and no on A. How many of the surveyed voters voted
no on all four propositions?

U

A

B C

D

Four overlapping regions.FIGURE 2.35
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40. If a person has type A blood, what blood types may the
person receive in a transfusion?

41. If a person has type B blood, what blood types may the
person receive in a transfusion?

42. If a person has type AB blood, what blood types may
the person receive in a transfusion?

43. If a person has type O blood, what blood types may the
person receive in a transfusion?

Answer the following questions using complete
sentences and your own words.

• History Questions

44. What notation did De Morgan introduce in regard to
fractions?

45. Why did De Morgan resign his professorship at
University College?

Exercises 46–52 refer to the following: A nonprofit organization’s
board of directors, composed of four women (Angela, Betty,
Carmen, and Delores) and three men (Ed, Frank, and Grant),
holds frequent meetings. A meeting can be held at Betty’s house, at
Delores’s house, or at Frank’s house.

● Delores cannot attend any meetings at Betty’s house.

● Carmen cannot attend any meetings on Tuesday or on
Friday.

● Angela cannot attend any meetings at Delores’s house.

● Ed can attend only those meetings that Grant also attends.

● Frank can attend only those meetings that both Angela and
Carmen attend.

46. If all members of the board are to attend a particular
meeting, under which of the following circumstances
can it be held?

a. Monday at Betty’s

b. Tuesday at Frank’s

c. Wednesday at Delores’s

d. Thursday at Frank’s

e. Friday at Betty’s

THE NEXT LEVEL
If a person wants to pursue an advanced degree
(something beyond a bachelor’s or four-year
degree), chances are the person must take a stan-
dardized exam to gain admission to a school or to
be admitted into a specific program. These exams
are intended to measure verbal, quantitative, and
analytical skills that have developed throughout a
person’s life. Many classes and study guides are
available to help people prepare for the exams.
The following questions are typical of those
found in the study guides.

In Exercises 23–26, given the sets U � {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
A � {0, 2, 4, 5, 9}, and B � {1, 2, 7, 8, 9}, use De Morgan’s Laws
to find the indicated sets.

23. (A	 ´ B)	

24. (A	 ¨ B)	

25. (A ¨ B	)	

26. (A ´ B	)	

In Exercises 27–32, use a Venn diagram like the one in Figure 2.36
to shade in the region corresponding to the indicated set.

2.2 Exercises 93

27. A ¨ B ¨ C

28. A ´ B ´ C

29. (A ´ B)	 ¨ C

30. A ¨ (B ´ C)	

31. B ¨ (A ´ C	)

32. (A	 ´ B) ¨ C	

33. Using Venn diagrams, prove De Morgan’s Law 
(A ¨ B)	 � A	 ´ B	.

34. Using Venn diagrams, prove A ´ (B ¨ C) �
(A ´ B) ¨ (A ´ C).

Use the data in Figure 2.34 to complete Exercises 35–39. Round
off your answers to a tenth of a percent.

35. What percent of all people in the United States have
blood that is

a. Rh positive? b. Rh negative?

36. Of all people in the United States who have type O
blood, what percent are

a. Rh positive? b. Rh negative?

37. Of all people in the United States who have type A
blood, what percent are

a. Rh positive? b. Rh negative?

38. Of all people in the United States who have type B
blood, what percent are

a. Rh positive? b. Rh negative?

39. Of all people in the United States who have type AB
blood, what percent are

a. Rh positive? b. Rh negative?

U

A B

C

Three overlapping circles.FIGURE 2.36
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51. If Grant is unable to attend a meeting on Tuesday at
Delores’s, what is the largest possible number of board
members who can attend?

a. 1 b. 2 c. 3

d. 4 e. 5

52. If a meeting is held on Friday, which of the following
board members cannot attend?

a. Grant b. Delores c. Ed

d. Betty e. Frank

Web Project

53. A person’s Rh factor will limit the person’s options
regarding the blood types he or she may receive during
a transfusion. Fill in the following chart. How does a
person’s Rh factor limit that person’s options regarding
compatible blood?

Some useful links for this web project are listed on the
text web site:
www.cengage.com/math/johnson

47. Which of the following can be the group that attends a
meeting on Wednesday at Betty’s?

a. Angela, Betty, Carmen, Ed, and Frank

b. Angela, Betty, Ed, Frank, and Grant

c. Angela, Betty, Carmen, Delores, and Ed

d. Angela, Betty, Delores, Frank, and Grant

e. Angela, Betty, Carmen, Frank, and Grant

48. If Carmen and Angela attend a meeting but Grant is
unable to attend, which of the following could be
true?

a. The meeting is held on Tuesday.

b. The meeting is held on Friday.

c. The meeting is held at Delores’s.

d. The meeting is held at Frank’s.

e. The meeting is attended by six of the board
members.

49. If the meeting is held on Tuesday at Betty’s, which of
the following pairs can be among the board members
who attend?

a. Angela and Frank

b. Ed and Betty

c. Carmen and Ed

d. Frank and Delores

e. Carmen and Angela

50. If Frank attends a meeting on Thursday that is not held
at his house, which of the following must be true?

a. The group can include, at most, two women.

b. The meeting is at Betty’s house.

c. Ed is not at the meeting.

d. Grant is not at the meeting.

e. Delores is at the meeting.
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If Your Blood Type Is: You Can Receive:

O+

O–

A+

A–

B+

B–

AB+

AB–

2.3 Introduction to Combinatorics

Objectives

• Develop and apply the Fundamental Principle of Counting

• Develop and evaluate factorials

If you went on a shopping spree and bought two pairs of jeans, three shirts, and two
pairs of shoes, how many new outfits (consisting of a new pair of jeans, a new shirt,
and a new pair of shoes) would you have? A compact disc buyers’ club sends you
a brochure saying that you can pick any five CDs from a group of 50 of today’s
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hottest sounds for only $1.99. How many different combinations can you choose?
Six local bands have volunteered to perform at a benefit concert, and there is some
concern over the order in which the bands will perform. How many different line-
ups are possible? The answers to questions like these can be obtained by listing all
the possibilities or by using three shortcut counting methods: the Fundamental
Principle of Counting, combinations, and permutations. Collectively, these
methods are known as combinatorics. (Incidentally, the answers to the questions
above are 12 outfits, 2,118,760 CD combinations, and 720 lineups.) In this section,
we consider the first shortcut method.

The Fundamental Principle of Counting

Daily life requires that we make many decisions. For example, we must decide
what food items to order from a menu, what items of clothing to put on in
the morning, and what options to order when purchasing a new car. Often, we
are asked to make a series of decisions: “Do you want soup or salad? What
type of dressing? What type of vegetable? What entrée? What beverage?
What dessert?” These individual components of a complete meal lead to
the question “Given all the choices of soups, salads, dressings, vegetables,
entrées, beverages, and desserts, what is the total number of possible dinner
combinations?”

When making a series of decisions, how can you determine the total num-
ber of possible selections? One way is to list all the choices for each category and
then match them up in all possible ways. To ensure that the choices are matched
up in all possible ways, you can construct a tree diagram. A tree diagram con-
sists of clusters of line segments, or branches, constructed as follows: A cluster
of branches is drawn for each decision to be made such that the number of
branches in each cluster equals the number of choices for the decision. For in-
stance, if you must make two decisions and there are two choices for decision 1
and three choices for decision 2, the tree diagram would be similar to the one
shown in Figure 2.37.

2.3 Introduction to Combinatorics 95
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A tree diagram.FIGURE 2.37

Although this method can be applied to all problems, it is very time consum-
ing and impractical when you are dealing with a series of many decisions, each of
which contains numerous choices. Instead of actually listing all possibilities via a
tree diagram, using a shortcut method might be desirable. The following example
gives a clue to finding such a shortcut.
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EXAMPLE 1 DETERMINING THE TOTAL NUMBER OF POSSIBLE CHOICES IN A
SERIES OF DECISIONS If you buy two pairs of jeans, three shirts, and two
pairs of shoes, how many new outfits (consisting of a new pair of jeans, a new shirt,
and a new pair of shoes) would you have?

SOLUTION Because there are three categories, selecting an outfit requires a series of three
decisions: You must select one pair of jeans, one shirt, and one pair of shoes. We will
make our three decisions in the following order: jeans, shirt, and shoes. (The order
in which the decisions are made does not affect the overall outfit.)

Our first decision (jeans) has two choices ( jeans 1 or jeans 2); our tree starts
with two branches, as in Figure 2.38.

Our second decision is to select a shirt, for which there are three choices. At
each pair of jeans on the tree, we draw a cluster of three branches, one for each
shirt, as in Figure 2.39.

Our third decision is to select a pair of shoes, for which there are two choices.
At each shirt on the tree, we draw a cluster of two branches, one for each pair of
shoes, as in Figure 2.40.
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start

shirt 1
shoes 1

Possible Outfits

jeans 1, shirt 1, shoes 1

jeans 1, shirt 1, shoes 2

jeans 1, shirt 2, shoes 1

jeans 1, shirt 2, shoes 2

jeans 1, shirt 3, shoes 1

jeans 1, shirt 3, shoes 2

jeans 2, shirt 1, shoes 1

jeans 2, shirt 1, shoes 2

jeans 2, shirt 2, shoes 1

jeans 2, shirt 2, shoes 2

jeans 2, shirt 3, shoes 1

jeans 2, shirt 3, shoes 2

shoes 2

shoes 1

shoes 2

shoes 1

shoes 2

shoes 1

shoes 2

shoes 1

shoes 2

shoes 1

shoes 2

shirt 2

shirt 3

shirt 1

shirt 2

shirt 3

jeans 1

jeans 2

The third decision.FIGURE 2.40

We have now listed all possible ways of putting together a new outfit; twelve
outfits can be formed from two pairs of jeans, three shirts, and two pairs of shoes.

Referring to Example 1, note that each time a decision had to be made, the
number of branches on the tree diagram was multiplied by a factor equal to the
number of choices for the decision. Therefore, the total number of outfits could
have been obtained by multiplying the number of choices for each decision:

jeans 2

jeans 1

start

The first decision.

FIGURE 2.38

shirt 1

shirt 2

shirt 3

jeans 2

start

shirt 1

shirt 2

shirt 3

jeans 1

The second decision.

FIGURE 2.39

2 · 3 · 2 � 12
jeans ⎯⎯↑ ↑ ↑ ↑⎯ outfits
shirts ⎯⎯⎯⏐ ⏐
shoes ⎯⎯⎯⎯⎯⏐
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The generalization of this process of multiplication is called the Fundamental Prin-
ciple of Counting.
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EXAMPLE 2 APPLYING THE FUNDAMENTAL PRINCIPLE OF COUNTING A serial
number consists of two consonants followed by three nonzero digits followed by a
vowel (A, E, I, O, U): for example, “ST423E” and “DD666E.” Determine how
many serial numbers are possible given the following conditions.

a. Letters and digits cannot be repeated in the same serial number.
b. Letters and digits can be repeated in the same serial number.

SOLUTION a. Because the serial number has six symbols, we must make six decisions. Consequently,
we must draw six boxes:

There are twenty-one different choices for the first consonant. Because the letters can-
not be repeated, there are only twenty choices for the second consonant. Similarly, there
are nine different choices for the first nonzero digit, eight choices for the second, and
seven choices for the third. There are five different vowels, so the total number of pos-
sible serial numbers is

� � � � � � 1,058,400

consonants   nonzero digits vowel

There are 1,058,400 possible serial numbers when the letters and digits cannot be re-
peated within a serial number.

b. Because letters and digits can be repeated, the number of choices does not decrease by
one each time as in part (a). Therefore, the total number of possibilities is

� � � � � � 1,607,445

consonants  nonzero digits vowel

There are 1,607,445 possible serial numbers when the letters and digits can be repeated
within a serial number.

Factorials

EXAMPLE 3 APPLYING THE FUNDAMENTAL PRINCIPLE OF COUNTING Three
students rent a three-bedroom house near campus. One of the bedrooms is very
desirable (it has its own bath), one has a balcony, and one is undesirable (it is very
small). In how many ways can the housemates choose the bedrooms?

↑↑ ↑↑ ↑
59992121

↑↑ ↑↑ ↑
57892021

THE FUNDAMENTAL PRINCIPLE OF COUNTING
The total number of possible outcomes of a series of decisions (making
selections from various categories) is found by multiplying the number of
choices for each decision (or category) as follows:
1. Draw a box for each decision.
2. Enter the number of choices for each decision in the appropriate box and

multiply.
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SOLUTION Three decisions must be made: who gets the room with the bath, who gets the room
with the balcony, and who gets the small room. Using the Fundamental Principle
of Counting, we draw three boxes and enter the number of choices for each decision.
There are three choices for who gets the room with the bath. Once that decision has
been made, there are two choices for who gets the room with the balcony, and finally,
there is only one choice for the small room.

� � � 6

There are six different ways in which the three housemates can choose the three
bedrooms.

Combinatorics often involve products of the type 3 · 2 · 1 � 6, as seen in
Example 3. This type of product is called a factorial, and the product 3 · 2 · 1 is
written as 3!. In this manner, 4! � 4 · 3 · 2 · 1 (� 24), and 5! � 5 · 4 · 3 · 2 · 1 (� 120).

123
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Many scientific calculators have a button that will calculate a factorial.
Depending on your calculator, the button will look like or , and you might
have to press a or button first. For example, to calculate 6!, type the
number 6, press the factorial button, and obtain 720. To calculate a factorial on
most graphing calculators, do the following:

• Type the value of n. (For example, type the number 6.)
• Press the button.
• Press the right arrow button as many times as necessary to highlight .
• Press the down arrow as many times as necessary to highlight the “!” symbol, and

press .
• Press to execute the calculation.

To calculate a factorial on a Casio graphing calculator, do the following:

• Press the button; this gives you access to the main menu.
• Press 1 to select the RUN mode; this mode is used to perform arithmetic operations.
• Type the value of n. (For example, type the number 6.)
• Press the button; this gives you access to various options displayed at the 

bottom of the screen.
• Press the button to see more options (i.e., ).
• Press the button to select probability options (i.e., ).
• Press the button to select factorial (i.e., ).
• Press the button to execute the calculation.

The factorial symbol “n!” was first introduced by Christian Kramp (1760–1826) of
Strasbourg in his Élements d’Arithmétique Universelle (1808). Before the
introduction of this “modern” symbol, factorials were commonly denoted by mn.
However, printing presses of the day had difficulty printing this symbol; conse-
quently, the symbol n! came into prominence because it was relatively easy for
a typesetter to use.

EXE
x!F1

PROBF3
SF6

OPTN

MENU

ENTER
ENTER

S

PRBS

MATH

2ndshift
n!x!

FACTORIALS
If n is a positive integer, then n factorial, denoted by n!, is the product of all
positive integers less than or equal to n.

n! � n · (n – 1) · (n – 2) · · · · · 2 · 1

As a special case, we define 0! � 1.
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EXAMPLE 4 EVALUATING FACTORIALS Find the following values.

a. 6! b. c.

SOLUTION a. 6! � 6 · 5 · 4 · 3 · 2 · 1
� 720

Therefore, 6! � 720.

8!

3! · 5!

8!

5!

c.

Therefore, � 56.

Using a calculator, we obtain the same result.

8!
3! · 5!

 � 56

 �
8 · 7 · 6
 3 · 2 · 1

 �
8 · 7 · 6 · 5 · 4 · 3 · 2 · 1
13 · 2 · 1 2  15 · 4 · 3 · 2 · 1 2

 
8!

3! · 5!
�

8 · 7 · 6 · 5 · 4 · 3 · 2 · 1
13 · 2 · 1 2 15 · 4 · 3 · 2 · 1 2

b.

Therefore, 

Using a calculator, we obtain the same result.

8!
5! � 336.

 � 336
 � 8 · 7 · 6

 �
8 · 7 · 6 · 5 · 4 · 3 · 2 · 1
              5 · 4 · 3 · 2 · 1

8!

5!
�

8 · 7 · 6 · 5 · 4 · 3 · 2 · 1
5 · 4 · 3 · 2 · 1

6

6

Casio 6 (i.e., ) (i.e., ) (i.e., ) EXEF1x!F3PROBF6SOPTN

ENTER!PRBMATH

x!

8 3 5

8 3 5

ENTER)!PRBMATH

�!PRBMATH(�!PRBMATH

�)x!�x!(�x!

8 5

8 5 ENTER!PRBMATH�!PRBMATH

�x!�x!
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1. A nickel, a dime, and a quarter are tossed.

a. Use the Fundamental Principle of Counting to
determine how many different outcomes are
possible.

b. Construct a tree diagram to list all possible out-
comes.

2. A die is rolled, and a coin is tossed.

a. Use the Fundamental Principle of Counting to
determine how many different outcomes are
possible.

b. Construct a tree diagram to list all possible
outcomes.

3. Jamie has decided to buy either a Mega or a Better
Byte desktop computer. She also wants to purchase
either Big Word, Word World, or Great Word word-
processing software and either Big Number or Number
World spreadsheet software.

a. Use the Fundamental Principle of Counting to
determine how many different packages of a
computer and software Jamie has to choose from.

b. Construct a tree diagram to list all possible
packages of a computer and software.

4. Sammy’s Sandwich Shop offers a soup, sandwich, and
beverage combination at a special price. There are three
sandwiches (turkey, tuna, and tofu), two soups
(minestrone and split pea), and three beverages (coffee,
milk, and mineral water) to choose from.

a. Use the Fundamental Principle of Counting to
determine how many different meal combinations
are possible.

b. Construct a tree diagram to list all possible soup,
sandwich, and beverage combinations.

5. If you buy three pairs of jeans, four sweaters, and two
pairs of boots, how many new outfits (consisting of a
new pair of jeans, a new sweater, and a new pair of
boots) will you have?

6. A certain model of automobile is available in six
exterior colors, three interior colors, and three interior
styles. In addition, the transmission can be either
manual or automatic, and the engine can have either
four or six cylinders. How many different versions of
the automobile can be ordered?

7. To fulfill certain requirements for a degree, a student
must take one course each from the following groups:
health, civics, critical thinking, and elective. If there
are four health, three civics, six critical thinking, and
ten elective courses, how many different options for
fulfilling the requirements does a student have?

8. To fulfill a requirement for a literature class, a student
must read one short story by each of the following

authors: Stephen King, Clive Barker, Edgar Allan Poe,
and H. P. Lovecraft. If there are twelve King, six
Barker, eight Poe, and eight Lovecraft stories to choose
from, how many different combinations of reading
assignments can a student choose from to fulfill the
reading requirement?

9. A sporting goods store has fourteen lines of snow skis,
seven types of bindings, nine types of boots, and three
types of poles. Assuming that all items are compatible
with each other, how many different complete ski
equipment packages are available?

10. An audio equipment store has ten different amplifiers,
four tuners, six turntables, eight tape decks, six compact
disc players, and thirteen speakers. Assuming that all
components are compatible with each other, how many
different complete stereo systems are available?

11. A cafeteria offers a complete dinner that includes one
serving each of appetizer, soup, entrée, and dessert for
$6.99. If the menu has three appetizers, four soups, six
entrées, and three desserts, how many different meals
are possible?

12. A sandwich shop offers a “U-Chooz” special consisting
of your choice of bread, meat, cheese, and special sauce
(one each). If there are six different breads, eight meats,
five cheeses, and four special sauces, how many
different sandwiches are possible?

13. How many different Social Security numbers are
possible? (A Social Security number consists of nine
digits that can be repeated.)

14. To use an automated teller machine (ATM), a customer
must enter his or her four-digit Personal Identification
Number (PIN). How many different PINs are possible?

15. Every book published has an International Standard
Book Number (ISBN). The number is a code used to
identify the specific book and is of the form 
X-XXX-XXXXX-X, where X is one of digits 0, 1, 
2, . . . , 9. How many different ISBNs are possible?

16. How many different Zip Codes are possible using
(a) the old style (five digits) and (b) the new style (nine
digits)? Why do you think the U.S. Postal Service
introduced the new system?

17. Telephone area codes are three-digit numbers of the
form XXX.

a. Originally, the first and third digits were neither 0 nor
1 and the second digit was always a 0 or a 1. How
many three-digit numbers of this type are possible?

b. Over time, the restrictions listed in part (a) have
been altered; currently, the only requirement is that
the first digit is neither 0 nor 1. How many three-
digit numbers of this type are possible?

2.3 Exercises
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41. Find the value of when n � 5 and r � 5.

42. Find the value of when n � r.

43. Find the value of when n � 7 and r � 3.

44. Find the value of when n � 7 and r � 4.

45. Find the value of when n � 5 and r � 5.

46. Find the value of when n � r.

Answer the following questions using complete
sentences and your own words.

• Concept Questions

47. What is the Fundamental Principle of Counting? When
is it used?

48. What is a factorial?

• History Questions

49. Who invented the modern symbol denoting a factorial?
What symbol did it replace? Why?

Exercises 50–54 refer to the following: In an executive parking
lot, there are six parking spaces in a row, labeled 1 through 6.
Exactly five cars of five different colors—black, gray, pink, white,
and yellow—are to be parked in the spaces. The cars can park in
any of the spaces as long as the following conditions are met:

● The pink car must be parked in space 3.
● The black car must be parked in a space next to the space

in which the yellow car is parked.
● The gray car cannot be parked in a space next to the space

in which the white car is parked.

50. If the yellow car is parked in space 1, how many accep-
table parking arrangements are there for the five cars?

a. 1 b. 2 c. 3 d. 4 e. 5

51. Which of the following must be true of any acceptable
parking arrangement?

a. One of the cars is parked in space 2.

b. One of the cars is parked in space 6.

THE NEXT LEVEL
If a person wants to pursue an advanced degree
(something beyond a bachelor’s or four-year
degree), chances are the person must take a stan-
dardized exam to gain admission to a school or to
be admitted into a specific program. These exams
are intended to measure verbal, quantitative, and
analytical skills that have developed throughout a
person’s life. Many classes and study guides are
available to help people prepare for the exams.
The following questions are typical of those
found in the study guides.

n!1n � r 2 !r!

n!1n � r 2 !r!

n!1n � r 2 !r!

n!1n � r 2 !r!

n!1n � r 2 !

n!1n � r 2 !c. Why were the original restrictions listed in part (a)
altered?

18. Major credit cards such as VISA and MasterCard have
a sixteen-digit account number of the form XXXX-
XXXX-XXXX-XXXX. How many different numbers
of this type are possible?

19. The serial number on a dollar bill consists of a letter
followed by eight digits and then a letter. How many
different serial numbers are possible, given the
following conditions?

a. Letters and digits cannot be repeated.

b. Letters and digits can be repeated.

c. The letters are nonrepeated consonants and the
digits can be repeated.

20. The serial number on a new twenty-dollar bill consists
of two letters followed by eight digits and then a letter.
How many different serial numbers are possible, given
the following conditions?

a. Letters and digits cannot be repeated.

b. Letters and digits can be repeated.

c. The first and last letters are repeatable vowels, the
second letter is a consonant, and the digits can be
repeated.

21. Each student at State University has a student I.D.
number consisting of four digits (the first digit is
nonzero, and digits may be repeated) followed by three
of the letters A, B, C, D, and E (letters may not be
repeated). How many different student numbers are
possible?

22. Each student at State College has a student I.D.
number consisting of five digits (the first digit is
nonzero, and digits may be repeated) followed by two
of the letters A, B, C, D, and E (letters may not be
repeated). How many different student numbers are
possible?

In Exercises 23–38, find the indicated value.

23. 4! 24. 5!

25. 10! 26. 8!

27. 20! 28. 25!

29. 6! · 4! 30. 8! · 6!

31. a. b. 32. a. b.

33. 34.

35. 36.

37. 38.

39. Find the value of when n � 16 and r � 14.

40. Find the value of when n � 19 and r � 16.
n!1n � r 2 !

n!1n � r 2 !

77!

74! · 3!

82!

80! · 2!

6!

3! · 3!

8!

4! · 4!

9!

5! · 4!

8!

5! · 3!

8!

2!

8!

6!

6!

2!

6!

4!
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54. If the yellow car is parked in space 2, which of the
following must be true?

a. None of the cars is parked in space 5.

b. The gray car is parked in space 6.

c. The black car is parked in a space next to the space
in which the white car is parked.

d. The white car is parked in a space next to the space
in which the pink car is parked.

e. The gray car is parked in a space next to the space in
which the black car is parked.

c. There is an empty space next to the space in which
the gray car is parked.

d. There is an empty space next to the space in which
the yellow car is parked.

e. Either the black car or the yellow car is parked in a
space next to space 3.

52. If the gray car is parked in space 2, none of the cars can
be parked in which space?

a. 1 b. 3 c. 4 d. 5 e. 6

53. The white car could be parked in any of the spaces
except which of the following?

a. 1 b. 2 c. 4 d. 5 e. 6

2.4 Permutations and Combinations

Objectives

• Develop and apply the Permutation Formula

• Develop and apply the Combination Formula

• Determine the number of distinguishable permutations

The Fundamental Principle of Counting allows us to determine the total number of
possible outcomes when a series of decisions (making selections from various
categories) must be made. In Section 2.3, the examples and exercises involved
selecting one item each from various categories; if you buy two pairs of jeans,
three shirts, and two pairs of shoes, you will have twelve (2 · 3 · 2 � 12) new out-
fits (consisting of a new pair of jeans, a new shirt, and a new pair of shoes). In this
section, we examine the situation when more than one item is selected from a cat-
egory. If more than one item is selected, the selections can be made either with or
without replacement.

With versus Without Replacement

Selecting items with replacement means that the same item can be selected more
than once; after a specific item has been chosen, it is put back into the pool of fu-
ture choices. Selecting items without replacement means that the same item cannot
be selected more than once; after a specific item has been chosen, it is not replaced.

Suppose you must select a four-digit Personal Identification Number (PIN)
for a bank account. In this case, the digits are selected with replacement; each
time a specific digit is selected, the digit is put back into the pool of choices for
the next selection. (Your PIN can be 3666; the same digit can be selected more
than once.) When items are selected with replacement, we use the Fundamental
Principle of Counting to determine the total number of possible outcomes; there
are 10 · 10 · 10 · 10 � 10,000 possible four-digit PINs.
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In many situations, items cannot be selected more than once. For instance, when
selecting a committee of three people from a group of twenty, you cannot select the
same person more than once. Once you have selected a specific person (say, Lauren),
you do not put her back into the pool of choices. When selecting items without
replacement, depending on whether the order of selection is important, permutations
or combinations are used to determine the total number of possible outcomes.

Permutations

When more than one item is selected (without replacement) from a single category,
and the order of selection is important, the various possible outcomes are called
permutations. For example, when the rankings (first, second, and third place) in a tal-
ent contest are announced, the order of selection is important; Monte in first, Lynn in
second, and Ginny in third place is different from Ginny in first, Monte in second, and
Lynn in third. “Monte, Lynn, Ginny” and “Ginny, Monte, Lynn” are different permu-
tations of the contestants. Naturally, these selections are made without replacement;
we cannot select Monte for first place and reselect him for second place.

EXAMPLE 1 FINDING THE NUMBER OF PERMUTATIONS Six local bands have
volunteered to perform at a benefit concert, but there is enough time for only four
bands to play. There is also some concern over the order in which the chosen bands
will perform. How many different lineups are possible?

SOLUTION We must select four of the six bands and put them in a specific order. The bands are
selected without replacement; a band cannot be selected to play and then be rese-
lected to play again. Because we must make four decisions, we draw four boxes
and put the number of choices for each decision in each appropriate box. There are
six choices for the opening band. Naturally, the opening band could not be the follow-
up act, so there are only five choices for the next group. Similarly, there are four
candidates for the third group and three choices for the closing band. The total
number of different lineups possible is found by multiplying the number of choices
for each decision:

� � � � 360

opening closing
band band

With four out of six bands playing in the performance, 360 lineups are possible.
Because the order of selecting the bands is important, the various possible out-
comes, or lineups, are called permutations; there are 360 permutations of six items
when the items are selected four at a time.

The computation in Example 1 is similar to a factorial, but the factors do not
go all the way down to 1; the product 6 · 5 · 4 · 3 is a “truncated” (cut-off) facto-
rial. We can change this truncated factorial into a complete factorial in the follow-
ing manner:

multiplying by and

 �
6!

2!

1
1

2
2

6 · 5 · 4 · 3 �
6 · 5 · 4 · 3 · 12 · 1 2
          12 · 1 2

↑↑
3456
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Notice that this last expression can be written as . (Recall that we were
selecting four out of six bands.) This result is generalized as follows.

6!
2! � 6!16 � 4 2 !

104 CHAPTER 2 Sets and Counting

Using the notation above and referring to Example 1, we note that 360 pos-
sible lineups of four bands selected from a pool of six can be denoted by

Other notations can be used to represent the number of per-
mutations of a group of items. In particular, the notations nPr, P(n, r), Pr

n, and Pn, r

all represent the number of possible permutations (or arrangements) of r items
selected (without replacement) from a pool of n items.

EXAMPLE 2 FINDING THE NUMBER OF PERMUTATIONS Three door prizes (first,
second, and third) are to be awarded at a ten-year high school reunion. Each of the
112 attendees puts his or her name in a hat. The first name drawn wins a two-night
stay at the Chat ’n’ Rest Motel, the second name wins dinner for two at Juju’s
Kitsch-Inn, and the third wins a pair of engraved mugs. In how many different
ways can the prizes be awarded?

SOLUTION We must select 3 out of 112 people (without replacement), and the order in
which they are selected is important. (Winning dinner is different from winning the
mugs.) Hence, we must find the number of permutations of 3 items selected from
a pool of 112:

There are 1,367,520 different ways in which the three prizes can be awarded to the
112 people.

In Example 2, if you try to use a calculator to find directly, you will not
obtain an answer. Entering 112 and pressing results in a calculator error. (Try
it.) Because factorials get very large very quickly, most calculators are not able to
find any factorial over 69!. (69! � 1.711224524 � 1098.)

x!

112!
109!

 � 1,367,520
 � 112 #  111 #  110

 �
112 · 111 · 110 · 109 · 108 · · · · · 2 · 1
              109 · 108 · · · · · 2 · 1

 �
112!

109!

112P3 �
112!

1112 � 3 2 !

6P4 � 6!16 � 4 2 ! � 360.

PERMUTATION FORMULA
The number of permutations, or arrangements, of r items selected without
replacement from a pool of n items (r � n), denoted by nPr, is

Permutations are used whenever more than one item is selected (without
replacement) from a category and the order of selection is important.

nPr �
n!

1n � r 2 !
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EXAMPLE 3 FINDING THE NUMBER OF PERMUTATIONS A bowling league has ten
teams. In how many different ways can the teams be ranked in the standings at the
end of a tournament? (Ties are not allowed.)

SOLUTION Because order is important, we find the number of permutations of ten items selected
from a pool of ten items:

Recall that 0! � 1.

In a league containing ten teams, 3,628,800 different standings are possible at the
end of a tournament.

Combinations

When items are selected from a group, the order of selection may or may not be
important. If the order is important (as in Examples 1, 2, and 3), permutations are
used to determine the total number of selections possible. What if the order of
selection is not important? When more than one item is selected (without replace-
ment) from a single category and the order of selection is not important, the vari-
ous possible outcomes are called combinations.

EXAMPLE 4 LISTING ALL POSSIBLE COMBINATIONS Two adults are needed to
chaperone a daycare center’s field trip. Marcus, Vivian, Frank, and Keiko are the
four managers of the center. How many different groups of chaperones are
possible?

SOLUTION In selecting the chaperones, the order of selection is not important; “Marcus and
Vivian” is the same as “Vivian and Marcus.” Hence, the permutation formula
cannot be used. Because we do not yet have a shortcut for finding the total number
of possibilities when the order of selection is not important, we must list all the
possibilities:

Marcus and Vivian Marcus and Frank Marcus and Keiko

Vivian and Frank Vivian and Keiko Frank and Keiko

Therefore, six different groups of two chaperones are possible from the group
of four managers. Because the order in which the people are selected is not
important, the various possible outcomes, or groups of chaperones, are called
combinations; there are six combinations when two items are selected from a
pool of four.

Just as nPr denotes the number of permutations of r elements selected from a
pool of n elements, nCr denotes the number of combinations of r elements selected
from a pool of n elements. In Example 4, we found that there are six combinations of

 � 3,628,800

 �
10!

1

 �
10!

0!

10P10 �
10!

110 � 10 2 !
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two people selected from a pool of four by listing all six of the combinations; that is,
4C2 � 6. If we had a larger pool, listing each combination to find out how many there
are would be extremely time consuming and tedious! Instead of listing, we take a dif-
ferent approach. We first find the number of permutations (with the permutation for-
mula) and then alter that number to account for the distinction between permutations
and combinations.

To find the number of combinations of two people selected from a pool of
four, we first find the number of permutations:

This figure of 12 must be altered to account for the distinction between permuta-
tions and combinations.

In Example 4, we listed combinations; one such combination was “Marcus
and Vivian.” If we had listed permutations, we would have had to list both
“Marcus and Vivian” and “Vivian and Marcus,” because the order of selection
matters with permutations. In fact, each combination of two chaperones listed in
Example 4 generates two permutations; each pair of chaperones can be given in
two different orders. Thus, there are twice as many permutations of two people se-
lected from a pool of four as there are combinations. Alternatively, there are half as
many combinations of two people selected from a pool of four as there are permu-
tations. We used the permutation formula to find that 4P2 � 12; thus,

This answer certainly fits with Example 4; we listed exactly six combinations.
What if three of the four managers were needed to chaperone the daycare

center’s field trip? Rather than finding the number of combinations by listing each
possibility, we first find the number of permutations and then alter that number to
account for the distinction between permutations and combinations.

The number of permutations of three people selected from a pool of four is

We know that some of these permutations represent the same combination. For
example, the combination “Marcus and Vivian and Keiko” generates 3! � 6 dif-
ferent permutations (using initials, they are: MVK, MKV, KMV, KVM, VMK,
VKM). Because each combination of three people generates six different permuta-
tions, there are one-sixth as many combinations as permutations. Thus,

This means that if three of the four managers were needed to chaperone the day-
care center’s field trip, there would be 4C3 � 4 possible combinations.

We just saw that when two items are selected from a pool of n items, each
combination of two generates 2! � 2 permutations, so

We also saw that when three items are selected from a pool of n items, each com-
bination of three generates 3! � 6 permutations, so

nC3 �
1

3!
 · nP3

nC2 �
1

2!
 · nP2

4C3 �
1

6
 · 4P3 �

1

6
 124 2 � 4

4P3 �
4!

14 � 3 2 ! �
4!

1!
� 24

4C2 �
1

2
 · 4P2 �

1

2
 112 2 � 6

4P2 �
4!

14 � 2 2 ! �
4!

2!
� 12
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More generally, when r items are selected from a pool of n items, each combina-
tion of r items generates r! permutations, so

using the Permutation Formula

multiplying the fractions together �
n!

r! · 1n � r 2 !

 �
1

r!
 ·

n!

1n � r 2 !

 nCr �
1

r!
 · nPr
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EXAMPLE 5 FINDING THE NUMBER OF COMBINATIONS A DVD club sends you a
brochure that offers any five DVDs from a group of fifty of today’s hottest releases.
How many different selections can you make?

SOLUTION Because the order of selection is not important, we find the number of combinations
when five items are selected from a pool of fifty:

� 2,118,760

 �
50 · 49 · 48 · 47 · 46

5 · 4 · 3 · 2 · 1

 �
50!

45! 5!

50C5 �
50!

150 � 5 2 ! 5!

Graphing calculators have buttons that will calculate nPr and nCr. To use them,
do the following:

• Type the value of n. (For example, type the number 50.)
• Press the button.
• Press the right arrow button as many times as necessary to highlight .
• Press the down arrow button as many times as necessary to highlight the appropriate

symbol— for permutations, for combinations—and press .
• Type the value of r. (For example, type the number 5.)
• Press to execute the calculation.ENTER

ENTERnCrnPr

T

PRBS

MATH

50 45 5 �)x!�x!(�x!

COMBINATION FORMULA
The number of distinct combinations of r items selected without replacement
from a pool of n items (r � n), denoted by nCr, is

Combinations are used whenever one or more items are selected (without
replacement) from a category and the order of selection is not important.

nCr �
n!

1n � r 2 ! r!
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On a Casio graphing calculator, do the following:

• Press the button; this gives you access to the main menu.
• Press 1 to select the RUN mode; this mode is used to perform arithmetic operations.
• Type the value of n. (For example, type the number 50.)
• Press the button; this gives you access to various options displayed at the bot-

tom of the screen.
• Press the button to see more options (i.e., ).
• Press the button to select probability options (i.e., ).
• Press the button to select combinations (i.e., ) or the button to select per-

mutations (i.e., ).
• Type the value of r. (For example, type the number 5.)
• Press the button to execute the calculation.EXE

nPr

F2nCrF3
PROBF3

SF6

OPTN

MENU

108 CHAPTER 2 Sets and Counting

In choosing five out of fifty DVDs, 2,118,760 combinations are possible.

EXAMPLE 6 FINDING THE NUMBER OF COMBINATIONS A group consisting of
twelve women and nine men must select a five-person committee. How many
different committees are possible if it must consist of the following?

a. three women and two men b. any mixture of men and women

SOLUTION a. Our problem involves two categories: women and men. The Fundamental Principle of
Counting tells us to draw two boxes (one for each category), enter the number of choices
for each, and multiply:

� � ?

Because the order of selecting the members of a committee is not important, we will use
combinations:

� 220 · 36

� 7,920

 �
12 · 11 · 10

3 · 2 · 1
 · 

9 · 8
2 · 1

 �
12!

9! · 3!
 · 

9!

7! · 2!

112C3 2  · 19C2 2  � 12!

112 � 3 2 ! · 3!
 · 

9!

19 � 2 2 ! · 2!

the number of ways
in which we can
select two out 

of nine 
men

the number of ways
in which we can
select three out 

of twelve 
women

50 5

Casio 50 (i.e., ) (i.e., ) (i.e., ) 5

EXE

F3nCrF3PROBF6SOPTN

ENTERnCrPRBMATH
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There are 7,920 different committees consisting of three women and two men.
b. Because the gender of the committee members doesn’t matter, our problem involves

only one category: people. We must choose five out of the twenty-one people, and the
order of selection is not important:

� 20,349

 �
21 · 20 · 19 · 18 · 17

5 · 4 · 3 · 2 · 1

 �
21!

16! · 5!

21C5 �
21!

121 � 5 2 ! · 5!
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There are 20,349 different committees consisting of five people.

EXAMPLE 7 EVALUATING THE COMBINATION FORMULA Find the value of 5Cr for
the following values of r:

a. r � 0 b. r � 1 c. r � 2 d. r � 3 e. r � 4 f. r � 5

SOLUTION a.

b.

c.

d.

e.

f. 5C5 �
5!

15 � 5 2 ! · 5!
�

5!

0! · 5!
� 1

5C4 �
5!

15 � 4 2 ! · 4!
�

5!

1! · 4!
� 5

5C3 �
5!

15 � 3 2 ! · 3!
�

5!

2! · 3! 
� 10

5C2 �
5!

15 � 2 2 ! · 2!
�

5!

3! · 2!
� 10

5C1 �
5!

15 � 1 2 ! · 1!
�

5!

4! · 1!
� 5

5C0 �
5!

15 � 0 2 ! · 0!
�

5!

5! · 0!
� 1

12 9 3 9

7 2

12 3 9 2 ENTERnCrPRBMATH�nCrPRBMATH

�))x!�x!(

�x!(�))x!�x!(�x!(

21 16 5

21 5 ENTERnCrPRBMATH

�)x!�x!(�x!
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The combinations generated in Example 7 exhibit a curious pattern. Notice
that the values of 5Cr are symmetric: 5C0 � 5C5, 5C1 � 5C4, and 5C2 � 5C3. Now
examine the diagram in Figure 2.41. Each number in this “triangle” of numbers is
the sum of two numbers in the row immediately above it. For example, 2 � 1 � 1
and 10 � 4 � 6, as shown by the inserted arrows. It is no coincidence that the val-
ues of 5Cr found in Example 7 also appear as a row of numbers in this “magic”
triangle. In fact, the sixth row contains all the values of 5Cr for r � 0, 1, 2, 3, 4,
and 5. In general, the (n � 1)th row of the triangle contains all the values of
nCr for r � 0, 1, 2, . . . , n; alternatively, the nth row of the triangle contains all
the values of n�1Cr for r � 0, 1, 2, . . . , n�1. For example, the values of 9Cr, for
r � 0, 1, 2, . . . , 9, are in the tenth row, and vice versa, the entries in the tenth row
are the values of 9Cr, for r � 0, 1, 2, . . . , 9.

Historically, this triangular pattern of numbers is referred to as Pascal’s Tri-
angle, in honor of the French mathematician, scientist, and philosopher Blaise
Pascal (1623–1662). Pascal is a cofounder of probability theory (see the Historical
Note in Section 3.1). Although the triangle has Pascal’s name attached to it, this
“magic” arrangement of numbers was known to other cultures hundreds of years
before Pascal’s time.

The most important part of any problem involving combinatorics is deciding
which counting technique (or techniques) to use. The following list of general
steps and the flowchart in Figure 2.42 can help you to decide which method or
methods to use in a specific problem.

110 CHAPTER 2 Sets and Counting

Pascal’s triangle.FIGURE 2.41

1st row

2nd row

5th row

6th row

and so on

1 1

11

1 1

11

1 1

1

2

3 3

44 6

5 510 10

3rd row

4th row

WHICH COUNTING TECHNIQUE?
1. What is being selected?
2. If the selected items can be repeated, use the Fundamental Principle of

Counting and multiply the number of choices for each category.
3. If there is only one category, use:

combinations if the order of selection does not matter—that is, r items can be
selected from a pool of n items in nCr � ways.
permutations if the order of selection does matter—that is, r items can be
selected from a pool of n items in nPr � ways.

4. If there is more than one category, use the Fundamental Principle of Counting
with one box per category.
a. If you are selecting one item per category, the number in the box for that

category is the number of choices for that category.
b. If you are selecting more than one item per category, the number in the box

for that category is found by using step 3.

n!1n � r 2 !

n!1n � r 2 ! · r!
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What is
being selected?

Can the selected
items be repeated?

Is there more than
one category?

Use the Fundamental
Principle of Counting.

Does the order of
selection matter?

Use
permutations.

Use
combinations.

Use
combinations.

Use
permutations.

Does the order of
selection matter?

Am I selecting only
one item per category?

Enter the number of choices
for that category in its box.

Use the Fundamental
Principle of Counting,
with one box per category.
For each box, ask the
following question:

No

No

No

No

No

Yes

Yes

Yes Yes

Yes

Start

Which counting technique?FIGURE 2.42

EXAMPLE 8 USING THE “WHICH COUNTING TECHNIQUE?” FLOWCHART A
standard deck of playing cards contains fifty-two cards.

a. How many different five-card hands containing four kings are possible?
b. How many different five-card hands containing four queens are possible?
c. How many different five-card hands containing four kings or four queens are possible?
d. How many different five-card hands containing four of a kind are possible?

SOLUTION a. We use the flowchart in Figure 2.42 and answer the following questions.

Q. What is being selected?
A. Playing cards.

Q. Can the selected items be repeated?
A. No.

Q. Is there more than one category?
A. Yes: Because we must have five cards, we need four kings and one non-king.

Therefore, we need two boxes:

�

Q. Am I selecting only one item per category?
A. Kings: no. Does the order of selection matter? No: Use combinations. Because

there are n � 4 kings in the deck and we want to select r � 4, we must compute

4C4. Non-kings: yes. Enter the number of choices for that category: There are
48 non-kings.

non-kingskings
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� � �

There are forty-eight different five-card hands containing four kings.
b. Using the same method as in part (a), we would find that there are forty-eight different

five-card hands containing four queens; the number of five-card hands containing four
queens is the same as the number of five-card hands containing four kings.

c. To find the number of five-card hands containing four kings or four queens, we define
the following sets:

A � {five-card hands � the hand contains four kings}

B � {five-card hands � the hand contains four queens}

Consequently,

A ´ B � {five-card hands � the hand contains four kings or four queens}

A ¨ B � {five-card hands � the hand contains four kings and four queens}

(Recall that the union symbol, ´, may be interpreted as the word “or,” while the
intersection symbol, ¨, may be interpreted as the word “and.” See Figure 2.13 for a
comparison of set theory and logic.)

Because there are no five-card hands that contain four kings and four queens, we
note that n(A ¨ B) � 0.

 � 48

 � 1 · 48

 �
4!

0! · 4!
 · 48

 �
4!

14 � 4 2 ! · 4!
 · 48

484C4non-kingskings

Chu Shih-chieh was the last and most
acclaimed mathematician of the

Sung Dynasty in China. Little is known
of his personal life; the actual dates of
his birth and death are unknown. His
work appears to have flourished during
the close of the thirteenth century. It is
believed that Chu Shih-chieh spent
many years as a wandering scholar,
earning a living by teaching mathemat-
ics to those who wanted to learn.

Two of Chu Shih-chieh’s works have
survived the centuries. The first, Suan-
hsüeh ch’i-meng (Introduction to Mathe-
matical Studies), was written in 1299
and contains elementary mathematics.
This work was very influential in Japan

and Korea, although it was lost in China
until the nineteenth century. Written in
1303, Chu’s second work Ssu-yüan yü-
chien (Precious Mirror of the Four Ele-
ments) contains more advanced mathe-
matics. The topics of Precious Mirror
include the solving of simultaneous
equations and the solving of equations
up to the fourteenth degree.

Of the many diagrams in Precious
Mirror, one has special interest: the arith-
metic triangle. Chu Shih-chieh’s triangle
contains the first eight rows of what is
known in the West as Pascal’s Triangle.
However, Chu does not claim credit for
the triangle; he refers to it as “a diagram
of the old method for finding eighth and
lower powers.” “Pascal’s” Triangle was
known to the Chinese well over
300 years before Pascal was born!

Historical
Note

CHU SHIH-CHIEH, CIRCA 1280–1303

The “Pascal” Triangle as depicted in
1303 at the front of Chu Shih-chieh’s 
Ssu-yüan yü-chien. It is entitled “The Old
Method Chart of the Seven Multiplying
Squares” and tabulates the binomial
coefficients up to the eighth power.
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Using the Union/Intersection Formula for the Union of Sets, we obtain

n(A ´ B) � n(A) � n(B) � n(A ¨ B)

� 48 � 48 � 0

� 96

There are ninety-six different five-card hands containing four kings or four queens.
d. Four of a kind means four cards of the same “denomination,” that is, four 2’s, or four 3’s,

or four 4’s, or . . . , or four kings, or four aces. Now, regardless of the denomination of the
card, there are forty-eight different five-card hands that contain four of any specific
denomination; there are forty-eight different five-card hands that contain four 2’s, there
are forty-eight different five-card hands that contain four 3’s, there are forty-eight different
five-card hands that contain four 4’s, and so on. As is shown in part (c), the word “or”
implies that we add cardinal numbers. Consequently,

n(four of a kind) � n(four 2’s or four 3’s or . . . or four kings or four aces)

� n(four 2’s) � n(four 3’s � . . . � n(four kings) 
� n(four aces)

� 48 � 48 � � � � � 48 � 48 (thirteen times)

� 13 � 48

� 624

There are 624 different five-card hands containing four of a kind.

As is shown in Example 8, there are 624 possible five-card hands that contain
four of a kind. When you are dealt five cards, what is the likelihood (or probabil-
ity) that you will receive one of these hands? This question, and its answer, will be
explored in Section 3.4, “Combinatorics and Probability.”

Permutations of Identical Items

In how many different ways can the three letters in the word “SAW” be arranged?
As we know, arrangements are referred to as permutations, so we can apply the
Permutation Formula, 

Therefore,

The six permutations of the letters in SAW are

SAW SWA AWS ASW WAS WSA

In general, if we have three different items (the letters in SAW), we can arrange
them in 3! � 6 ways. However, this method applies only if the items are all
different (distinct).

What happens if some of the items are the same (identical)? For example, in how
many different ways can the three letters in the word “SEE” be arranged? Because two
of the letters are identical (E), we cannot use the Permutation Formula directly; we take
a slightly different approach. Temporarily, let us assume that the E’s are written in dif-
ferent colored inks, say, red and blue. Therefore, SEE could be expressed as SEE.
These three symbols could be arranged in 3! � 6 ways as follows:

SEE SEE ESE ESE EES EES

If we now remove the color, the arrangements are

SEE SEE ESE ESE EES EES

3P3 �
3!

13 � 3 2 ! �
3!

0!
�

3 �2 �1

1
� 6

nPr � n!1n � r 2 !.
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Some of these arrangements are duplicates of others; as we can see, there are only
three different or distinguishable permutations, namely, SEE, ESE, and EES.
Notice that when n � 3 (the total number of letters in SEE) and x � 2 (the number
of identical letters), we can divide n! by x! to obtain the number of distinguishable
permutations; that is,

This method is applicable because dividing by the factorial of the repeated letter
eliminates the duplicate arrangements; the method may by generalized as follows.

n!

x!
�

3!

2!
�

3�2� 1

2 � 1
�

3 � 2 � 1

2 � 1
� 3
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EXAMPLE 9 FINDING THE NUMBER OF DISTINGUISHABLE PERMUTATIONS
Find the number of distinguishable permutations of the letters in the word
“MISSISSIPPI.”

SOLUTION The word “MISSISSIPPI” has n � 11 letters; I is repeated x � 4 times, S is repeated
y � 4 times, and P is repeated z � 2 times. Therefore, we divide the total factorial
by the factorial of each repeated letter and obtain

The letters in the word MISSISSIPPI can be arranged in 34,650 ways. (Note that if
the 11 letters were all different, there would be 11! � 39,96,800 permutations.)

n!

x!y!z!
�

11!

4!4!2!
� 34,650

In Exercises 1–12, find the indicated value:

1. a. 7P3 b. 7C3 2. a. 8P4 b. 8C4

3. a. 5P5 b. 5C5 4. a. 9P0 b. 9C0

5. a. 14P1 b. 14C1 6. a. 13C3 b. 13C10

7. a. 100P3 b. 100C3 8. a. 80P4 b. 80C4

9. a. xPx�1 b. xCx�1 10. a. xP1 b. xC1

11. a. xP2 b. xC2 12. a. xPx�2 b. xCx�2

13. a. Find 3P2.

b. List all of the permutations of {a, b, c} when the 
elements are taken two at a time.

14. a. Find 3C2.

b. List all of the combinations of {a, b, c} when the
elements are taken two at a time.

15. a. Find 4C2.

b. List all of the combinations of {a, b, c, d} when the
elements are taken two at a time.

16. a. Find 4P2.

b. List all of the permutations of {a, b, c, d} when the
elements are taken two at a time.

17. An art class consists of eleven students. All of them
must present their portfolios and explain their work to
the instructor and their classmates at the end of the
semester.

a. If their names are drawn from a hat to determine
who goes first, second, and so on, how many pre-
sentation orders are possible?

2.4 Exercises

DISTINGUISHABLE PERMUTATIONS OF IDENTICAL ITEMS
The number of distinguishable permutations (or arrangements) of n items
in which x items are identical, y items are identical, z items are identical, and
so on, is . That is, to find the number of distinguishable permutations,
divide the total factorial by the factorial of each repeated item.

n!
x!y!z!p
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24. Three hundred people buy raffle tickets. Three winning
tickets will be drawn at random.

a. If first prize is $100, second prize is $50, and third
prize is $20, in how many different ways can the
prizes be awarded?

b. If each prize is $50, in how many different ways
can the prizes be awarded?

25. A group of nine women and six men must select a four-
person committee. How many committees are possible
if it must consist of the following?

a. two women and two men

b. any mixture of men and women

c. a majority of women

26. A group of ten seniors, eight juniors, six sophomores,
and five freshmen must select a committee of four.
How many committees are possible if the committee
must contain the following:

a. one person from each class

b. any mixture of the classes

c. exactly two seniors

Exercises 27–32 refer to a deck of fifty-two playing cards (jokers
not allowed). If you are unfamiliar with playing cards, see the end
of Section 3.1 for a description of a standard deck.

27. How many five-card poker hands are possible?

28. a. How many five-card poker hands consisting of all
hearts are possible?

b. How many five-card poker hands consisting of all
cards of the same suit are possible?

b. If their names are put in alphabetical order to
determine who goes first, second, and so on, how
many presentation orders are possible?

18. An English class consists of twenty-three students, and
three are to be chosen to give speeches in a school com-
petition. In how many different ways can the teacher
choose the team, given the following conditions?

a. The order of the speakers is important.

b. The order of the speakers is not important.

19. In how many ways can the letters in the word “school”
be arranged? (See the photograph below.)

20. A committee of four is to be selected from a group of
sixteen people. How many different committees are
possible, given the following conditions?

a. There is no distinction between the responsibilities
of the members.

b. One person is the chair, and the rest are general
members.

c. One person is the chair, one person is the secretary,
one person is responsible for refreshments, and one
person cleans up after meetings.

21. A softball league has thirteen teams. If every team must
play every other team once in the first round of league
play, how many games must be scheduled?

22. In a group of eighteen people, each person shakes
hands once with each other person in the group. How
many handshakes will occur?

23. A softball league has thirteen teams. How many differ-
ent end-of-the-season rankings of first, second, and
third place are possible (disregarding ties)?

2.4 Exercises 115

Exercise 19: Right letters, wrong order. SHCOOL is painted along the newly paved road
leading to Southern Guilford High School on Drake Road Monday, August 9, 2010, in
Greensboro, N.C.
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g. Use the pattern described in part (f) to predict the sum
of the entries in the sixth row of Pascal’s triangle.

h. Find the sum of the entries in the sixth row of Pascal’s
Triangle. Was your prediction in part (g) correct?

i. Find the sum of the entries in the nth row of Pascal’s
Triangle.

40. a. Add adjacent entries of the sixth row of Pascal’s
Triangle to obtain the seventh row.

b. Find 6Cr for r � 0, 1, 2, 3, 4, 5, and 6.

c. How are the answers to parts (a) and (b) related?

41. Use Pascal’s Triangle to answer the following.

a. In which row would you find the value of 4C2?

b. In which row would you find the value of nCr?

c. Is 4C2 the second number in the fourth row?

d. Is 4C2 the third number in the fifth row?

e. What is the location of nCr? Why?

42. Given the set S � {a, b, c, d}, answer the following.

a. How many one-element subsets does S have?

b. How many two-element subsets does S have?

c. How many three-element subsets does S have?

d. How many four-element subsets does S have?

e. How many zero-element subsets does S have?

f. How many subsets does S have?

g. If n(S) � k, how many subsets will S have?

In Exercises 43–50, find the number of permutations of the letters
in each word.

43. ALASKA 44. ALABAMA

45. ILLINOIS 46. HAWAII

47. INDIANA 48. TENNESSEE

49. TALLAHASSEE 50. PHILADELPHIA

The words in each of Exercises 51–54 are homonyms (words that
are pronounced the same but have different meanings). Find the
number of permutations of the letters in each word.

51. a. PIER b. PEER

52. a. HEAR b. HERE

53. a. STEAL b. STEEL

54. a. SHEAR b. SHEER

Answer the following questions using complete
sentences and your own words.

• Concept Questions

55. Suppose you want to know how many ways r items
can be selected from a group of n items. What
determines whether you should calculate nPr or nCr?

56. For any given values of n and r, which is larger, nPr or

nCr? Why?

29. a. How many five-card poker hands containing
exactly three aces are possible?

b. How many five-card poker hands containing three
of a kind are possible?

30. a. How many five-card poker hands consisting of
three kings and two queens are possible?

b. How many five-card poker hands consisting of three
of a kind and a pair (a full house) are possible?

31. How many five-card poker hands containing two pair
are possible?

HINT: You must select two of the thirteen ranks, then
select a pair of each, and then one of the remaining
cards.

32. How many five-card poker hands containing exactly
one pair are possible?

HINT: After selecting a pair, you must select three of
the remaining twelve ranks and then select one card of
each.

33. A 6�53 lottery requires choosing six of the numbers 1
through 53. How many different lottery tickets can you
choose? (Order is not important, and the numbers do
not repeat.)

34. A 7�39 lottery requires choosing seven of the numbers
1 through 39. How many different lottery tickets can
you choose? (Order is not important, and the numbers
do not repeat.)

35. A 5�36 lottery requires choosing five of the numbers 1
through 36. How many different lottery tickets can you
choose? (Order is not important, and the numbers do
not repeat.)

36. A 6�49 lottery requires choosing six of the numbers 1
through 49. How many different lottery tickets can you
choose? (Order is not important, and the numbers do
not repeat.)

37. Which lottery would be easier to win, a 6�53 or a
5�36? Why?

HINT: See Exercises 33 and 35.

38. Which lottery would be easier to win, a 6�49 or a
7�39? Why?

HINT: See Exercises 34 and 36.
39. a. Find the sum of the entries in the first row of

Pascal’s Triangle.

b. Find the sum of the entries in the second row of
Pascal’s Triangle.

c. Find the sum of the entries in the third row of
Pascal’s Triangle.

d. Find the sum of the entries in the fourth row of
Pascal’s Triangle.

e. Find the sum of the entries in the fifth row of
Pascal’s Triangle.

f. Is there a pattern to the answers to parts (a)–(e)? If
so, describe the pattern you see.

116 CHAPTER 2 Sets and Counting
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d. A and D; B and C; E and F

e. A and D; B and E; C and F

59. Which of the following teams must team B play
second?

a. A b. C c. D d. E e. F

60. The last set of games could be between which teams?

a. A and B; C and F; D and E

b. A and C; B and F; D and E

c. A and D; B and C; E and F

d. A and E; B and C; D and F

e. A and F; B and E; C and D

61. If team D wins five games, which of the following
must be true?

a. Team A loses five games.

b. Team A wins four games.

c. Team A wins its first game.

d. Team B wins five games.

e. Team B loses at least one game.

Web Project

62. Write a research paper on any historical topic referred
to in this section or in a previous section. Following is
a partial list of topics:
● John Venn
● Augustus De Morgan
● Chu Shih-chieh

Some useful links for this web project are listed on the
text web site: www.cengage.com/math/johnson

Exercises 57–61 refer to the following: A baseball league has six
teams: A, B, C, D, E, and F. All games are played at 7:30 P.M. on
Fridays, and there are sufficient fields for each team to play a
game every Friday night. Each team must play each other
team exactly once, and the following conditions must be met:

● Team A plays team D first and team F second.
● Team B plays team E first and team C third.
● Team C plays team F first.

57. What is the total number of games that each team must
play during the season?

a. 3 b. 4 c. 5 d. 6 e. 7

58. On the first Friday, which of the following pairs of
teams play each other?

a. A and B; C and F; D and E

b. A and B; C and E; D and F

c. A and C; B and E; D and F
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2.5 Infinite Sets

Objectives

• Determine whether two sets are equivalent

• Establish a one-to-one correspondence between the elements of two sets

• Determine the cardinality of various infinite sets.

WARNING: Many leading nineteenth-century mathematicians and philosophers
claim that the study of infinite sets may be dangerous to your mental health.

Consider the sets E and N, where E � {2, 4, 6, . . .} and N � {1, 2, 3, . . .}. Both
are examples of infinite sets (they “go on forever”). E is the set of all even count-
ing numbers, and N is the set of all counting (or natural) numbers. Because every

THE NEXT LEVEL
If a person wants to pursue an advanced degree
(something beyond a bachelor’s or four-year
degree), chances are the person must take a stan-
dardized exam to gain admission to a school or to
be admitted into a specific program. These exams
are intended to measure verbal, quantitative, and
analytical skills that have developed throughout a
person’s life. Many classes and study guides are
available to help people prepare for the exams.
The following questions are typical of those
found in the study guides.
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element of E is an element of N, E is a subset of N. In addition, N contains ele-
ments not in E; therefore, E is a proper subset of N. Which set is “bigger,” E or
N? Intuition might lead many people to think that N is twice as big as E because
N contains all the even counting numbers and all the odd counting numbers. Not
so! According to the work of Georg Cantor (considered by many to be the father
of set theory), N and E have exactly the same number of elements! This seeming
paradox, a proper subset that has the same number of elements as the set from
which it came, caused a philosophic uproar in the late nineteenth century. (Hence,
the warning at the beginning of this section.) To study Cantor’s work (which is
now accepted and considered a cornerstone in modern mathematics), we must
first investigate the meaning of a one-to-one correspondence and equivalent sets.

One-to-One Correspondence

Is there any relationship between the sets A � {one, two, three} and B � {Pontiac,
Chevrolet, Ford}? Although the sets contain different types of things (numbers
versus automobiles), each contains the same number of things; they are the same
size. This relationship (being the same size) forms the basis of a one-to-one corre-
spondence. A one-to-one correspondence between the sets A and B is a pairing up
of the elements of A and B such that each element of A is paired up with exactly
one element of B, and vice versa, with no element left out. For instance, the ele-
ments of A and B might be paired up as follows:

one two three

D D D

Pontiac Chevrolet Ford

(Other correspondences, or matchups, are possible.) If two sets have the same car-
dinal number, their elements can be put into a one-to-one correspondence. When-
ever a one-to-one correspondence exists between the elements of two sets A and B,
the sets are equivalent (denoted by A � B). Hence, equivalent sets have the same
number of elements.

If two sets have different cardinal numbers, it is not possible to construct a
one-to-one correspondence between their elements. The sets C � {one, two} and
B � {Pontiac, Chevrolet, Ford} do not have a one-to-one correspondence; no mat-
ter how their elements are paired up, one element of B will always be left over
(B has more elements; it is “bigger”):

one two

D D

Pontiac Chevrolet Ford

The sets C and B are not equivalent.
Given two sets A and B, if any one of the following statements is true, then

the other statements are also true:

1. There exists a one-to-one correspondence between the elements of A and B.
2. A and B are equivalent sets.
3. A and B have the same cardinal number; that is, n(A) � n(B).

EXAMPLE 1 DETERMINING WHETHER TWO SETS ARE EQUIVALENT Determine
whether the sets in each of the following pairs are equivalent. If they are
equivalent, list a one-to-one correspondence between their elements.

a. A � {John, Paul, George, Ringo};
B � {Lennon, McCartney, Harrison, Starr}

b. C � {a, b, x, d}; D � {I, O, �}
c. A � {1, 2, 3, . . . , 48, 49, 50}; B � {1, 3, 5, . . . , 95, 97, 99}
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SOLUTION a. If sets have the same cardinal number, they are equivalent. Now, n(A) � 4 and n(B) � 4;
therefore, A � B.

Because A and B are equivalent, their elements can be put into a one-to-one
correspondence. One such correspondence follows:

John Paul George Ringo

D D D D

Lennon McCartney Harrison Starr

b. Because n(C) � 4 and n(D) � 3, C and D are not equivalent.
c. A consists of all natural numbers from 1 to 50, inclusive. Hence, n(A) � 50. B consists

of all odd natural numbers from 1 to 99, inclusive. Since half of the natural numbers

Georg Ferdinand Ludwig
Philip Cantor was born in

St. Petersburg, Russia. His father
was a stockbroker and wanted
his son to become an engineer;
his mother was an artist and mu-
sician. Several of Cantor’s mater-
nal relatives were accomplished
musicians; in his later years,
Cantor often wondered how his life
would have turned out if he had become
a violinist instead of pursuing a controver-
sial career in mathematics.

Following his father’s wishes,
Cantor began his engineering studies
at the University of Zurich in 1862.
However, after one semester, he de-
cided to study philosophy and pure
mathematics. He transferred to the
prestigious University of Berlin, studied
under the famed mathematicians Karl
Weierstrass, Ernst Kummer, and
Leopold Kronecker, and received his
doctorate in 1867. Two years later,
Cantor accepted a teaching position
at the University of Halle and remained
there until he retired in 1913.

Cantor’s treatises on set theory and
the nature of infinite sets were first pub-
lished in 1874 in Crelle’s Journal, which
was influential in mathematical circles.
On their publication, Cantor’s theories
generated much controversy among
mathematicians and philosophers. Para-
doxes concerning the cardinal numbers

of infinite sets, the na-
ture of infinity, and
Cantor’s form of logic
were unsettling to
many, including Can-
tor’s former teacher
Leopold Kronecker. In
fact, some felt that
Cantor’s work was not
just revolutionary but
actually dangerous.
Kronecker led the

attack on Cantor’s theories. He was
an editor of Crelle’s Journal and held
up the publication of one of Cantor’s
subsequent articles for so long that
Cantor refused to publish ever again
in the Journal. In addition, Kronecker
blocked Cantor’s efforts to obtain a
teaching position at the University of
Berlin. Even though Cantor was at-
tacked by Kronecker and his
followers, others respected him. Real-
izing the importance of communica-
tion among scholars, Cantor
founded the Association of German
Mathematicians in 1890 and served
as its president for many years. In ad-
dition, Cantor was instrumental in
organizing the first International
Congress of Mathematicians, held in
Zurich in 1897.

As a result of the repeated at-
tacks on him and his work, Cantor
suffered many nervous breakdowns,
the first when he was thirty-nine. He
died in a mental hospital in Halle
at the age of seventy-three, never

Historical
Note

GEORG CANTOR, 1845–1918

Written in 1874, Cantor’s first major paper on the
theory of sets, Über eine Eigenshaft des Inbegriffes
aller reellen algebraischen Zahlen (On a Property of
the System of All the Real Algebraic Numbers),
sparked a major controversy concerning the nature
of infinite sets. To gather international support for his
theory, Cantor had his papers translated into French.
This 1883 French version of Cantor’s work was
published in the newly formed journal Acta
Mathematica. Cantor’s works were translated into
English during the early twentieth century.
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having received proper recognition for
the true value of his discoveries. Mod-
ern mathematicians believe that Can-
tor’s form of logic and his concepts of
infinity revolutionized all of mathemat-
ics, and his work is now considered a
cornerstone in its development.
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from 1 to 100 are odd (and half are even), there are fifty (100 � 2 � 50) odd natural
numbers less than 100; that is, n(B) � 50. Because A and B have the same cardinal num-
ber, A � B.

Many different one-to-one correspondences may be established between the ele-
ments of A and B. One such correspondence follows:

A � {1, 2, 3, . . . , n, . . . , 48, 49, 50}

D D D . . . D . . . D D    D

B � {1, 3, 5, . . . , (2n � 1), . . . , 95, 97, 99}

That is, each natural number n � A is paired up with the odd number (2n � 1) � B.
The n 4 (2n � 1) part is crucial because it shows each individual correspondence.
For example, it shows that 13 � A corresponds to 25 � B (n � 13, so 2n � 26 and
2n � 1 � 25). Likewise, 69 � B corresponds to 35 � A (2n � 1 � 69, so 2n � 70 and
n � 35).

As we have seen, if two sets have the same cardinal number, they are equiv-
alent, and their elements can be put into a one-to-one correspondence. Conversely,
if the elements of two sets can be put into a one-to-one correspondence, the sets
have the same cardinal number and are equivalent. Intuitively, this result appears
to be quite obvious. However, when Georg Cantor applied this relationship to infi-
nite sets, he sparked one of the greatest philosophical debates of the nineteenth
century.

Countable Sets

Consider the set of all counting numbers N � {1, 2, 3, . . .}, which consists of an
infinite number of elements. Each of these numbers is either odd or even. Defining
O and E as O � {1, 3, 5, . . .} and E � {2, 4, 6, . . .}, we have O ¨ E � � and
O ´ E � N; the sets O and E are mutually exclusive, and their union forms the en-
tire set of all counting numbers. Obviously, N contains elements that E does not. As
we mentioned earlier, the fact that E is a proper subset of N might lead people to
think that N is “bigger” than E. In fact, N and E are the “same size”; N and E each
contain the same number of elements.

Recall that two sets are equivalent and have the same cardinal number if the
elements of the sets can be matched up via a one-to-one correspondence. To show
the existence of a one-to-one correspondence between the elements of two sets
of numbers, we must find an explicit correspondence between the general ele-
ments of the two sets. In Example 1(c), we expressed the general correspondence
as n 4 (2n � 1).

EXAMPLE 2 FINDING A ONE-TO-ONE CORRESPONDENCE BETWEEN TWO
INFINITE SETS

a. Show that E � {2, 4, 6, 8, . . .} and N � {1, 2, 3, 4, . . .} are equivalent sets.
b. Find the element of N that corresponds to 1430 � E.
c. Find the element of N that corresponds to x � E.

SOLUTION a. To show that E � N, we must show that there exists a one-to-one correspondence between
the elements of E and N. The elements of E and N can be paired up as follows:

N � {1, 2, 3, 4, . . . ,  n, . . .}

D D D D . . . D

E � {2, 4, 6, 8, . . . , 2n, . . .}
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Any natural number n � N corresponds with the even natural number 2n � E. Because
there exists a one-to-one correspondence between the elements of E and N, the sets E
and N are equivalent; that is, E � N.

b. 1430 � 2n � E, so n � � 715 � N. Therefore, 715 � N corresponds to 1430 � E.
c. x � 2n � E, so n � � N. Therefore, n � � N corresponds to x � 2n � E.

We have just seen that the set of even natural numbers is equivalent to the set
of all natural numbers. This equivalence implies that the two sets have the same
number of elements! Although E is a proper subset of N, both sets have the same
cardinal number; that is, n(E) � n(N ). Settling the controversy sparked by this
seeming paradox, mathematicians today define a set to be an infinite set if it can
be placed in a one-to-one correspondence with a proper subset of itself.

How many counting numbers are there? How many even counting numbers
are there? We know that each set contains an infinite number of elements and
that n(N) � n(E), but how many is that? In the late nineteenth century, Georg Cantor
defined the cardinal number of the set of counting numbers to be ℵ0 (read “aleph-
null”). Cantor utilized Hebrew letters, of which aleph, ℵ, is the first. Consequently,
the proper response to “How many counting numbers are there?” is “There are aleph-
null of them”; n(N) � ℵ0. Any set that is equivalent to the set of counting numbers
has cardinal number ℵ0. A set is countable if it is finite or if it has cardinality ℵ0.

Cantor was not the first to ponder the paradoxes of infinite sets. Hundreds
of years before, Galileo had observed that part of an infinite set contained as
many elements as the whole set. In his monumental Dialogue Concerning the
Two Chief World Systems (1632), Galileo made a prophetic observation:
“There are as many (perfect) squares as there are (natural) numbers because
they are just as numerous as their roots.” In other words, the elements of the sets
N � {1, 2, 3, . . . , n, . . .} and S � {12, 22, 32, . . . , n2, . . .} can be put into a one-
to-one correspondence (n 4 n2). Galileo pondered which of the sets (perfect
squares or natural numbers) was “larger” but abandoned the subject because he
could find no practical application of this puzzle.

EXAMPLE 3 SHOWING THAT THE SET OF INTEGERS IS COUNTABLE Consider
the following one-to-one correspondence between the set I of all integers and the
set N of all natural numbers:

N � {1, 2, 3, 4, 5, . . .}
D D D D D

I � {0, 1, �1, 2, �2, . . .} 

where an odd natural number n corresponds to a nonpositive integer and an
even natural number n corresponds to a positive integer .

a. Find the 613th integer; that is, find the element of I that corresponds to 613 � N.
b. Find the element of N that corresponds to 853 � I.
c. Find the element of N that corresponds to �397 � I.
d. Find n(I), the cardinal number of the set I of all integers.
e. Is the set of integers countable?

SOLUTION a. 613 � N is odd, so it corresponds to If you continued counting
the integers as shown in the above correspondence, �306 would be the 613th integer in
your count.

b. 853 � I is positive, so

multiplying by 2

1,706 � N corresponds to 853 � I.
This means that 853 is the 1,706th integer.

 n � 1,706

 853 �
n

2

1 � 613
2 � �612

2 � �306.

n
2

1 � n
2

x
2

x
2

1430
2
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c. �397 � I is negative, so

multiplying by 2

subtracting 1

multiplying by �1

795 � N corresponds to �397 � I.
This means that �397 is the 795th integer.

d. The given one-to-one correspondence shows that I and N have the same (infinite) num-
ber of elements; n(I) � n(N ). Because n(N ) � ℵ0, the cardinal number of the set of all
integers is n(I) � ℵ0.

e. By definition, a set is called countable if it is finite or if it has cardinality ℵ0. The set of
integers has cardinality ℵ0, so it is countable. This means that we can “count off” all of
the integers, as we did in parts (a), (b), and (c).

We have seen that the sets N (all counting numbers), E (all even counting
numbers), and I (all integers) contain the same number of elements, ℵ0. What
about a set containing fractions?

EXAMPLE 4 DETERMINING WHETHER THE SET OF POSITIVE RATIONAL NUM-
BERS IS COUNTABLE Determine whether the set P of all positive rational
numbers is countable.

SOLUTION The elements of P can be systematically listed in a table of rows and columns as
follows: All positive rational numbers whose denominator is 1 are listed in the first
row, all positive rational numbers whose denominator is 2 are listed in the second
row, and so on, as shown in Figure 2.43.

Each positive rational number will appear somewhere in the table. For in-
stance, will be in row 66 and column 125. Note that not all the entries in Fig-
ure 2.43 are in lowest terms; for instance, , , , and so on are all equal to .1

2
4
8

3
6

2
4

125
66

 n � 795

 �795 � �n

 �794 � 1 � n

 �397 �
1 � n

2
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1
1

2
1

3
1

4
1

1
2

2
2

3
2

4
2

1
3

2
3

3
3

4
3

1
2

2
2

3
2

4
2

1
3

2
3

3
3

4
3

1
4

2
4

3
4

4
4

1
5

2
5

3
5

4
5

5
2

Start: 1
1 2

1
3
1

4
1

5
1

5
3

5
4

5
5

A list of all positive rational
numbers.

FIGURE 2.43 The circled rational numbers are
not in lowest terms; they are
omitted from the list.

FIGURE 2.44
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Consequently, to avoid listing the same number more than once, an entry that is
not in lowest terms must be eliminated from our list. To establish a one-to-one corre-
spondence between P and N, we can create a zigzag diagonal pattern as shown by the
arrows in Figure 2.44. Starting with , we follow the arrows and omit any number that
is not in lowest terms (the circled numbers in Figure 2.44). In this manner, a list of all
positive rational numbers with no repetitions is created. Listing the elements of P in
this order, we can put them in a one-to-one correspondence with N:

N � {1, 2, 3, 4, 5, 6, 7, 8, 9, 10,11, . . .}
D  D D D D D D  DD D D

Any natural number n is paired up with the positive rational number found by
counting through the “list” given in Figure 2.44. Conversely, any positive rational
number is located somewhere in the list and is paired up with the counting number
corresponding to its place in the list.

Therefore, P � N, so the set of all positive rational numbers is countable.

Uncountable Sets

Every infinite set that we have examined so far is countable; each can be put into a
one-to-one correspondence with the set of all counting numbers and consequently
has cardinality ℵ0. Do not be misled into thinking that all infinite sets are counta-
ble! By utilizing a “proof by contradiction,” Georg Cantor showed that the infinite
set A � {x � 0 � x � 1} is not countable. This proof involves logic that is different
from what you are used to. Do not let that intimidate you.

Assume that the set A � {x � 0 � x � 1} is countable; that is, assume that 
n(A) � ℵ0. This assumption implies that the elements of A and N can be put into a
one-to-one correspondence; each a � A can be listed and counted. Because the ele-
ments of A are nonnegative real numbers less than 1, each an � 0. . . . .
Say, for instance, the numbers in our list are

a1 � 0.3750000 . . . the first element of A
a2 � 0.7071067 . . . the second element of A
a3 � 0.5000000 . . . the third element of A
a4 � 0.6666666 . . . and so on.

The assumption that A is countable implies that every element of A appears
somewhere in the above list. However, we can create an element of A (call it b) that is
not in the list. We build b according to the “diagonal digits” of the numbers in our list
and the following rule: If the digit “on the diagonal” is not zero, put a 0 in the
corresponding place in b; if the digit “on the diagonal” is zero, put a 1 in the corre-
sponding place in b.

The “diagonal digits” of the numbers in our list are as follows:

a1 � 0. 750000 . . .

a2 � 0.7 71067 . . .

a3 � 0.50 0000 . . .

a4 � 0.666 666 . . .

Because the first digit on the diagonal is 3, the first digit of b is 0. Because the
second digit on the diagonal is 0, the second digit of b is 1. Using all the “diagonal

6

0

0

3

P � e1, 2, 
1

2
, 

1

3
, 3, 4, 

3

2
, 

2

3
, 

1

4
, 

1

5
,  5, . . . f

1
1
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digits” of the numbers in our list, we obtain b � 0.0110. . . . Because 0 � b � 1, it
follows that b � A. However, the number b is not on our list of all elements of A.
This is because

b � a1 (b and a1 differ in the first decimal place)
b � a2 (b and a2 differ in the second decimal place)
b � a3 (b and a3 differ in the third decimal place), and so on

This contradicts the assumption that the elements of A and N can be put into
a one-to-one correspondence. Since the assumption leads to a contradiction, the
assumption must be false; A � {x � 0 � x � 1} is not countable. Therefore,
n(A) � n(N ). That is, A is an infinite set and n(A) � ℵ0.

An infinite set that cannot be put into a one-to-one correspondence with N is
said to be uncountable. Consequently, an uncountable set has more elements than
the set of all counting numbers. This implies that there are different magnitudes of
infinity! To distinguish the magnitude of A from that of N, Cantor denoted the car-
dinality of A � {x � 0 � x � 1} as n(A) � c (c for continuum). Thus, Cantor
showed that ℵ0 � c. Cantor went on to show that A was equivalent to the entire set
of all real numbers, that is, A � t. Therefore, n(t) � c.

Although he could not prove it, Cantor hypothesized that no set could have a
cardinality between ℵ0 and c. This famous unsolved problem, labeled the Contin-
uum Hypothesis, baffled mathematicians throughout the first half of the twentieth
century. It is said that Cantor suffered a devastating nervous breakdown in 1884
when he announced that he had a proof of the Continuum Hypothesis only to de-
clare the next day that he could show the Continuum Hypothesis to be false!

The problem was finally “solved” in 1963. Paul J. Cohen demonstrated that
the Continuum Hypothesis is independent of the entire framework of set theory;
that is, it can be neither proved nor disproved by using the theorems of set theory.
Thus, the Continuum Hypothesis is not provable.

Although no one has produced a set with cardinality between ℵ0 and c, many
sets with cardinality greater than c have been constructed. In fact, modern mathe-
maticians have shown that there are infinitely many magnitudes of infinity! Using
subscripts, these magnitudes, or cardinalities, are represented by ℵ0, ℵ1, ℵ2, . . .
and have the property that ℵ0 � ℵ1 � ℵ2 � . . . . In this sense, the set N of all nat-
ural numbers forms the “smallest” infinite set. Using this subscripted notation, the
Continuum Hypothesis implies that c � ℵ1; that is, given that N forms the small-
est infinite set, the set t of all real numbers forms the next “larger” infinite set.

Points on a Line

When students are first exposed to the concept of the real number system, a num-
ber line like the one in Figure 2.45 is inevitably introduced. The real number sys-
tem, denoted by t, can be put into a one-to-one correspondence with all points on
a line, such that every real number corresponds to exactly one point on a line and
every point on a line corresponds to exactly one real number. Consequently, any
(infinite) line contains c points. What about a line segment? For example, how
many points does the segment [0, 1] contain? Does the segment [0, 2] contain
twice as many points as the segment [0, 1]? Once again, intuition can lead to erro-
neous conclusions when people are dealing with infinite sets.

EXAMPLE 5 SHOWING THAT LINE SEGMENTS OF DIFFERENT LENGTHS ARE
EQUIVALENT SETS OF POINTS Show that the line segments [0, 1] and 
[0, 2] are equivalent sets of points.

SOLUTION Because the segment [0, 2] is twice as long as the segment [0, 1], intuition might
tell us that it contains twice as many points. Not so! Recall that two sets are

124 CHAPTER 2 Sets and Counting

–2 –1 0 2
�

1

The real number line.

FIGURE 2.45
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equivalent (and have the same cardinal number) if their elements can be put into a
one-to-one correspondence.

On a number line, let A represent the point 0, let B represent 1, and let C
represent 2, as shown in Figure 2.46. Our goal is to develop a one-to-one corre-
spondence between the elements of the segments AB and AC. Now draw the
segments separately, with AB above AC, as shown in Figure 2.47. (To distin-
guish the segments from each other, point A of segment AB has been relabeled
as point A	.)

Extend segments AA	 and CB so that they meet at point D, as shown in
Figure 2.48. Any point E on A	B can be paired up with the unique point F on AC
formed by the intersection of lines DE and AC, as shown in Figure 2.49. Con-
versely, any point F on segment AC can be paired up with the unique point E on
A	B formed by the intersection of lines DF and A	B. Therefore, a one-to-one
correspondence exists between the two segments, so [0, 1] � [0, 2]. Conse-
quently, the interval [0, 1] contains exactly the same number of points as the
interval [0, 2]!

A B C

0 1 2

The interval [0, 2].

FIGURE 2.46

A C

A	 B

The intervals [A, B] and 
[A, C ].

FIGURE 2.47

D

A

A	 B

C

D

E

F
A

A	 B

C

Extending AA	 and 
CB to form point D.

FIGURE 2.48 A one-to-one correspondence
between line segments.

FIGURE 2.49

Even though the segment [0, 2] is twice as long as the segment [0, 1], each
segment contains exactly the same number of points. The method used in Exam-
ple 5 can be applied to any two line segments. Consequently, all line segments,
regardless of their length, contain exactly the same number of points; a line seg-
ment 1 inch long has exactly the same number of points as a segment 1 mile
long! Once again, it is easy to see why Cantor’s work on the magnitude of in-
finity was so unsettling to many scholars.

Having concluded that all line segments contain the same number of
points, we might ask how many points that is. What is the cardinal number?
Given any line segment AB, it can be shown that n(AB) � c; the points of a line
segment can be put into a one-to-one correspondence with the points of a line.
Consequently, the interval [0, 1] contains the same number of elements as the
entire real number system.

If things seem rather strange at this point, keep in mind that Cantor’s pio-
neering work produced results that puzzled even Cantor himself. In a paper
written in 1877, Cantor constructed a one-to-one correspondence between the
points in a square (a two-dimensional figure) and the points on a line segment
(a one-dimensional figure). Extending this concept, he concluded that a line
segment and the entire two-dimensional plane contain exactly the same number
of points, c. Communicating with his colleague Richard Dedekind, Cantor
wrote, “I see it, but I do not believe it.” Subsequent investigation has shown
that the number of points contained in the interval [0, 1] is the same as the num-
ber of points contained in all of three-dimensional space! Needless to say,
Cantor’s work on the cardinality of infinity revolutionized the world of modern
mathematics.

95057_02_ch02_p067-130.qxd  9/27/10  9:55 AM  Page 125

Prop
ert

y segment contains exactly the same number of points. The method used in Exam-

Prop
ert

y segment contains exactly the same number of points. The method used in Exam-
ple 5 

Prop
ert

y ple 5 
regardless of their length, contain exactly the same number of points; a line seg-

Prop
ert

y 
regardless of their length, contain exactly the same number of points; a line seg-
ment 1 inch long has exactly the same number of points as a segment 1 mile

Prop
ert

y 
ment 1 inch long has exactly the same number of points as a segment 1 mile

of Even though the segment [0, 2] is twice as long as the segment [0, 1], eachof Even though the segment [0, 2] is twice as long as the segment [0, 1], each

Cen
ga

ge
 

C

Cen
ga

ge
 

C

Cen
ga

ge
 

Cen
ga

ge
 

Extending 

Cen
ga

ge
 

Extending AA

Cen
ga

ge
 

AA
CBCen

ga
ge

 

CB to form point Cen
ga

ge
 

to form point Cen
ga

ge
 Le

arn
ing

 Therefore, a one-to-one

Le
arn

ing
 Therefore, a one-to-one

correspondence exists between the two segments, so [0, 1] 

Le
arn

ing
 correspondence exists between the two segments, so [0, 1] 

quently, the interval [0, 1] contains exactly the same number of points as the

Le
arn

ing
 

quently, the interval [0, 1] contains exactly the same number of points as the

Le
arn

ing
 

D

Le
arn

ing
 

D

Le
arn

ing
 

Le
arn

ing
 



In Exercises 1–10, find the cardinal numbers of the sets in each
given pair to determine whether the sets are equivalent. If they are
equivalent, list a one-to-one correspondence between their elements.

1. S � {Sacramento, Lansing, Richmond, Topeka}

C � {California, Michigan, Virginia, Kansas}

2. T � {Wyoming, Ohio, Texas, Illinois, Colorado}

P � {Cheyenne, Columbus, Austin, Springfield, Denver}

3. R � {a, b, c}; G � {a, b, x, d}

4. W � {I, II, III}; H � {one, two}

5. C � {3, 6, 9, 12, . . . , 63, 66}

D � {4, 8, 12, 16, . . . , 84, 88}

6. A � {2, 4, 6, 8, . . . , 108, 110}

B � {5, 10, 15, 20, . . . , 270, 275}

7. G � {2, 4, 6, 8, . . . , 498, 500}

H � {1, 3, 5, 7, . . . , 499, 501}

8. E � {2, 4, 6, 8, . . . , 498, 500}

F � {3, 6, 9, 12, . . . , 750, 753}

9. A � {1, 3, 5, . . . , 121, 123}

B � {125, 127, 129, . . . , 245, 247}

10. S � {4, 6, 8, . . . , 664, 666}

T � {5, 6, 7, . . . , 335, 336}

11. a. Show that the set O of all odd counting numbers, 
O � {1, 3, 5, 7, . . .}, and N � {1, 2, 3, 4, . . .} are
equivalent sets.

b. Find the element of N that corresponds to 
1,835 � O.

c. Find the element of N that corresponds to x � O.

d. Find the element of O that corresponds to 
782 � N.

e. Find the element of O that corresponds to n � N.

12. a. Show that the set W of all whole numbers, W � {0, 1,
2, 3, . . .}, and N � {1, 2, 3, 4, . . .} are equivalent sets.

b. Find the element of N that corresponds to 932 � W.

c. Find the element of N that corresponds to x � W.

d. Find the element of W that corresponds to 932 � N.

e. Find the element of W that corresponds to n � N.

13. a. Show that the set T of all multiples of 3, T � {3, 6, 9,
12, . . .}, and N � {1, 2, 3, 4, . . .} are equivalent sets.

b. Find the element of N that corresponds to 936 � T.

c. Find the element of N that corresponds to x � T.

d. Find the element of T that corresponds to 936 � N.

e. Find the element of T that corresponds to n � N.

14. a. Show that the set F of all multiples of 5, F � {5, 10,
15, 20, . . .}, and N � {1, 2, 3, 4, . . .} are equivalent
sets.

b. Find the element of N that corresponds to 605 � F.

c. Find the element of N that corresponds to x � F.

d. Find the element of F that corresponds to 605 � N.

e. Find the element of F that corresponds to n � N.

15. Consider the following one-to-one correspondence
between the set A of all even integers and the set N of
all natural numbers:

N � {1, 2,   3,  4,   5, . . .}

D D D D D

A � {0, 2, �2, 4, �4, . . .}

where an odd natural number n corresponds to the
nonpositive integer 1 � n and an even natural number
n corresponds to the positive even integer n.

a. Find the 345th even integer; that is, find the
element of A that corresponds to 345 � N.

b. Find the element of N that corresponds to 248 � A.

c. Find the element of N that corresponds to �754 � A.

d. Find n(A).

16. Consider the following one-to-one correspondence
between the set B of all odd integers and the set N of all
natural numbers:

N � {1,   2,  3,   4, 5, . . .}

D D D D D

B � {1, �1, 3, �3, 5, . . .}

where an even natural number n corresponds to
the negative odd integer 1 � n and an odd natural
number n corresponds to the odd integer n.

a. Find the 345th odd integer; that is, find the element
of B that corresponds to 345 � N.

b. Find the element of N that corresponds to 241 � B.

c. Find the element of N that corresponds to �759 � B.

d. Find n(B).

In Exercises 17–22, show that the given sets of points are
equivalent by establishing a one-to-one correspondence.

17. the line segments [0, 1] and [0, 3]

18. the line segments [1, 2] and [0, 3]

19. the circle and square shown in Figure 2.50

HINT: Draw one figure inside the other.

FIGURE 2.50

2.5 Exercises

126

95057_02_ch02_p067-130.qxd  9/27/10  9:55 AM  Page 126

Prop
ert

y that corresponds to 

Prop
ert

y that corresponds to 

that corresponds to 

Prop
ert

y that corresponds to 

that corresponds to 

Prop
ert

y 
that corresponds to 

of all whole numbers, 

Prop
ert

y 
of all whole numbers, 

{1, 2, 3, 4, . . .} are equivalent sets.

Prop
ert

y 

{1, 2, 3, 4, . . .} are equivalent sets.

Find the element of Prop
ert

y 

Find the element of NProp
ert

y 

N that corresponds to 932Prop
ert

y 

that corresponds to 932

Find the element of Prop
ert

y 

Find the element of NProp
ert

y 

N that corresponds to Prop
ert

y 

that corresponds to 

W
Prop

ert
y 

W

of that corresponds to of that corresponds to 
Cen

ga
ge

 

of all odd counting numbers, 

Cen
ga

ge
 

of all odd counting numbers, 
{1, 2, 3, 4, . . .} areCen

ga
ge

 

{1, 2, 3, 4, . . .} are

Find 

Cen
ga

ge
 Find n

Cen
ga

ge
 n(

Cen
ga

ge
 (A

Cen
ga

ge
 A(A(

Cen
ga

ge
 (A(

Consider the following one-to-one correspondence

Cen
ga

ge
 Consider the following one-to-one correspondence

between the set 

Cen
ga

ge
 

between the set 
natural numbers:

Cen
ga

ge
 

natural numbers:

N

Cen
ga

ge
 

N

Le
arn

ing
 where an odd natural number 

Le
arn

ing
 where an odd natural number n

Le
arn

ing
 n corresponds to the

Le
arn

ing
 corresponds to the

and an even natural number

Le
arn

ing
 

and an even natural number
corresponds to the positive even integer 

Le
arn

ing
 

corresponds to the positive even integer 

Find the 345th even integer; that is, find the

Le
arn

ing
 

Find the 345th even integer; that is, find the
that corresponds to 345 

Le
arn

ing
 

that corresponds to 345 

Find the element of 

Le
arn

ing
 

Find the element of N

Le
arn

ing
 

N that corresponds to 248

Le
arn

ing
 

that corresponds to 248

Find the element of Le
arn

ing
 

Find the element of NLe
arn

ing
 

N



Chapter Review 127

Answer the following questions using complete
sentences and your own words.

• Concept Questions

24. What is the cardinal number of the “smallest” infinite
set? What set or sets have this cardinal number?

• history Questions

25. What aspect of Georg Cantor’s set theory caused 
controversy among mathematicians and philosophers?

26. What contributed to Cantor’s breakdown in 1884?

27. Who demonstrated that the Continuum Hypothesis
cannot be proven? When?

Web Project

28. Write a research paper on any historical topic referred
to in this section. Following is a partial list of topics:
● Georg Cantor
● Richard Dedekind
● Paul J. Cohen
● Bernhard Bolzano
● Leopold Kronecker
● the Continuum Hypothesis

Some useful links for this web project are listed on the
text web site: www.cengage.com/math/johnson

20. the rectangle and triangle shown in Figure 2.51

HINT: Draw one figure inside the other.

21. a circle of radius 1 cm and a circle of 5 cm

HINT: Draw one figure inside the other.

22. a square of side 1 cm and a square of side 5 cm

HINT: Draw one figure inside the other.

23. Show that the set of all real numbers between 0 
and 1 has the same cardinality as the set of all real
numbers.

HINT: Draw a semicircle to represent the set of real
numbers between 0 and 1 and a line to represent the
set of all real numbers, and use the method of
Example 5.

FIGURE 2.51

Chapter Review2
TERMS
aleph-null
cardinal number
combination
combinatorics
complement
continuum
countable set

De Morgan’s Laws
distinguishable 

permutations
element
empty set
equal sets
equivalent sets
factorial
Fundamental Principle

of Counting

improper subset
infinite set
intersection
mutually exclusive
one-to-one

correspondence
permutation
proper subset
roster notation
set

set-builder notation
set theory
subset
tree diagram
uncountable set
union
universal set
Venn diagram
well-defined set
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1. State whether the given set is well-defined.

a. the set of all multiples of 5.

b. the set of all difficult math problems

c. the set of all great movies

d. the set of all Oscar-winning movies

2. Given the sets

U � {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

A � {0, 2, 4, 6, 8}

B � {1, 3, 5, 7, 9}

find the following using the roster method.

a. A	 b. B	

c. A ´ B d. A ¨ B

3. Given the sets A � {Maria, Nobuko, Leroy, Mickey,
Kelly} and B � {Rachel, Leroy, Deanna, Mickey},
find the following.

a. A ´ B b. A ¨ B

4. List all subsets of C � {Dallas, Chicago, Tampa}.
Identify which subsets are proper and which are
improper.

5. Given n(U) � 61, n(A) � 32, n(B) � 26, and 
n(A ´ B) � 40, do the following.

a. Find n(A ¨ B).

b. Draw a Venn diagram illustrating the composition
of U.

In Exercises 6 and 7, use a Venn diagram like the one in Figure 2.15
to shade in the region corresponding to the indicated set.

6. (A	 ´ B)	

7. (A ¨ B	)	

In Exercises 8 and 9, use a Venn diagram like the one in Figure
2.36 to shade in the region corresponding to the indicated set.

8. A	 ¨ (B ´ C	)

9. (A	 ¨ B) ´ C	

10. A survey of 1,000 college seniors yielded the following
information: 396 seniors favored capital punishment,
531 favored stricter gun control, and 237 favored both.

a. How many favored capital punishment or stricter
gun control?

b. How many favored capital punishment but not
stricter gun control?

c. How many favored stricter gun control but not
capital punishment?

d. How many favored neither capital punishment nor
stricter gun control?

11. A survey of recent college graduates yielded the
following information: 70 graduates earned a degree
in mathematics, 115 earned a degree in education, 23
earned degrees in both mathematics and education,

and 358 earned a degree in neither mathematics nor
education.
a. What percent of the college graduates earned a

degree in mathematics or education?
b. What percent of the college graduates earned a

degree in mathematics only?
c. What percent of the college graduates earned a

degree in education only?
12. A local anime fan club surveyed 67 of its members

regarding their viewing habits last weekend, and the
following information was obtained: 30 members
watched an episode of Naruto, 44 watched an episode of
Death Note, 23 watched an episode of Inuyasha,
20 watched both Naruto and Inuyasha, 5 watched
Naruto and Inuyasha but not Death Note, 15 watched
both Death Note and Inuyasha, and 23 watched only
Death Note.
a. How many of the club members watched exactly

one of the shows?
b. How many of the club members watched all three

shows?
c. How many of the club members watched none of

the three shows?
13. An exit poll yielded the following information

concerning people’s voting patterns on Propositions A,
B, and C: 305 people voted yes on A, 95 voted yes
only on A, 393 voted yes on B, 192 voted yes only on
B, 510 voted yes on A or B, 163 voted yes on C, 87
voted yes on all three, and 249 voted no on all three.
What percent of the voters voted yes on more than one
proposition?

14. Given the sets U � {a, b, c, d, e, f, g, h, i}, A �
{b, d, f, g}, and B � {a, c, d, g, i}, use De Morgan’s
Laws to find the following.
a. (A	 ´ B)	 b. (A ¨ B	)	

15. Refer to the Venn diagram depicted in Figure 2.32.
a. In a group of 100 Americans, how many have type

O or type A blood?
b. In a group of 100 Americans, how many have type

O and type A blood?
c. In a group of 100 Americans, how many have

neither type O nor type A blood?
16. Refer to the Venn diagram depicted in Figure 2.28.

a. For a typical group of 100 Americans, fill in the
cardinal number of each region in the diagram.

b. In a group of 100 Americans, how many have type
O blood or are Rh�?

c. In a group of 100 Americans, how many have type
O blood and are Rh�?

d. In a group of 100 Americans, how many have
neither type O blood nor are Rh�?

REVIEW EXERCISES
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17. Sid and Nancy are planning their anniversary celebra-
tion, which will include viewing an art exhibit, having
dinner, and going dancing. They will go either to the
Museum of Modern Art or to the New Photo Gallery;
dine either at Stars, at Johnny’s, or at the Chelsea; and go
dancing either at Le Club or at Lizards.
a. In how many different ways can Sid and Nancy

celebrate their anniversary?
b. Construct a tree diagram to list all possible ways 

in which Sid and Nancy can celebrate their
anniversary.

18. A certain model of pickup truck is available in five
exterior colors, three interior colors, and three interior
styles. In addition, the transmission can be either
manual or automatic, and the truck can have either two-
wheel or four-wheel drive. How many different
versions of the pickup truck can be ordered?

19. Each student at State University has a student I.D.
number consisting of five digits (the first digit is
nonzero, and digits can be repeated) followed by two
of the letters A, B, C, and D (letters cannot be
repeated). How many different student numbers are
possible?

20. Find the value of each of the following.

a. (17 � 7)! b. (17 � 17)!

c. d.

21. In how many ways can you select three out of eleven
items under the following conditions?

a. Order of selection is not important.

b. Order of selection is important.

22. Find the value of each of the following.

a. 15P4 b. 15C4 c. 15P11

23. A group of ten women and twelve men must select a
three-person committee. How many committees are
possible if it must consist of the following?

a. one woman and two men

b. any mixture of men and women

c. a majority of men

24. A volleyball league has ten teams. If every team must
play every other team once in the first round of league
play, how many games must be scheduled?

25. A volleyball league has ten teams. How many different
end-of-the-season rankings of first, second, and third
place are possible (disregarding ties)?

26. Using a standard deck of fifty-two cards (no jokers),
how many seven-card poker hands are possible?

27. Using a standard deck of fifty-two cards and two jokers,
how many seven-card poker hands are possible?

28. A 6/42 lottery requires choosing six of the numbers 1
through 42. How many different lottery tickets can you
choose?

27!

20!7!

82!

79!
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In Exercises 29 and 30, find the number of permutations of the
letters in each word.

29. a. FLORIDA b. ARIZONA c. MONTANA

30. a. AFFECT b. EFFECT

31. What is the major difference between permutations
and combinations?

32. Use Pascal’s Triangle to answer the following.

a. In which entry in which row would you find the
value of 7C3?

b. In which entry in which row would you find the
value of 7C4?

c. How is the value of 7C3 related to the value of 7C4?
Why?

d. What is the location of nCr? Why?

33. Given the set S � {a, b, c}, answer the following.

a. How many one-element subsets does S have?

b. How many two-element subsets does S have?

c. How many three-element subsets does S have?

d. How many zero-element subsets does S have?

e. How many subsets does S have?

f. How is the answer to part (e) related to n(S)?

In Exercises 34–36, find the cardinal numbers of the sets in each
given pair to determine whether the sets are equivalent. If they are
equivalent, list a one-to-one correspondence between their elements.

34. A � {I, II, III, IV, V} and B � {one, two, three, four,
five}

35. C � {3, 5, 7, . . . , 899, 901} and D � {2, 4, 6, . . . ,
898, 900}

36. E � {Ronald} and F � {Reagan, McDonald}

37. a. Show that the set S of perfect squares, S � {1, 4, 9,
16, . . . }, and N � {1, 2, 3, 4, . . . } are equivalent
sets.

b. Find the element of N that corresponds to 841 � S.

c. Find the element of N that corresponds to x � S.

d. Find the element of S that corresponds to 144 � N.

e. Find the element of S that corresponds to n � N.

38. Consider the following one-to-one correspondence
between the set A of all integer multiples of 3 and the
set N of all natural numbers:

N � {1, 2,   3,  4,   5, . . .}

D D D D D

A � {0, 3, �3, 6, �6, . . .}

where an odd natural number n corresponds to
the nonpositive integer (1 � n), and an even natural
number n corresponds to the positive even integer n.

a. Find the element of A that corresponds to 396 � N.

b. Find the element of N that corresponds to 396 � A.

c. Find the element of N that corresponds to �153 � A.

d. Find n(A).

3
2

3
2
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39. Show that the line segments [0, 1] and [0, p] are
equivalent sets of points by establishing a one-to-one
correspondence.

Answer the following questions using complete
sentences and your own words.

• Concept Questions

40. What is the difference between proper and improper
subsets?

41. Explain the difference between {0} and �.

42. What is a factorial?

43. What is the difference between permutations and
combinations?

• History Questions

44. What roles did the following people play in the
development of set theory and combinatorics?
● Georg Cantor
● Augustus De Morgan
● Christian Kramp
● Chu Shih-chieh
● John Venn

Exercises 45–48 refer to the following: Two doctors in a local
clinic are determining which days of the week they will be on call.
Each day, Monday through Sunday, is to be assigned to one of two
doctors, A and B, such that the assignment is consistent with the
following conditions:

● No day is assigned to both doctors.
● Neither doctor has more than four days.
● Monday and Thursday must be assigned to the same doctor.
● If Tuesday is assigned to doctor A, then so is Sunday.
● If Saturday is assigned to doctor B, then Friday is not

assigned to doctor B.

45. Which one of the following could be a complete and
accurate list of the days assigned to doctor A?

a. Monday, Thursday

b. Monday, Tuesday, Sunday

c. Monday, Thursday, Sunday

d. Monday, Tuesday, Thursday

e. Monday, Thursday, Friday, Sunday

46. Which of the following cannot be true?

a. Thursday and Sunday are assigned to doctor A.

b. Friday and Saturday are assigned to doctor A.

c. Monday and Tuesday are assigned to doctor B.

d. Monday, Wednesday, and Sunday are assigned to
doctor A.

e. Tuesday, Wednesday, and Saturday are assigned to
doctor B.

47. If Friday and Sunday are both assigned to doctor B,
how many different ways are there to assign the other
five days to the doctors?

a. 1 b. 2 c. 3

d. 5 e. 6

48. If doctor A has four days, none of which is Monday,
which of the following days must be assigned to
doctor A?

a. Tuesday b. Wednesday c. Friday

d. Saturday e. Sunday

THE NEXT LEVEL
If a person wants to pursue an advanced degree
(something beyond a bachelor’s or four-year
degree), chances are the person must take a stan-
dardized exam to gain admission to a school or to
be admitted into a specific program. These exams
are intended to measure verbal, quantitative, and
analytical skills that have developed throughout a
person’s life. Many classes and study guides are
available to help people prepare for the exams.
The following questions are typical of those
found in the study guides.
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